Study on the removal characteristics and degradation pathways of highly toxic and refractory organic pollutants in real pharmaceutical factory wastewater treated by a pilot-scale integrated process.

continuous stirred tank reactor expanded sludge bed reactor microbial electrolysis cells moving bed biofilm reactor pharmaceutical wastewater toxic pollutants

Journal

Frontiers in microbiology
ISSN: 1664-302X
Titre abrégé: Front Microbiol
Pays: Switzerland
ID NLM: 101548977

Informations de publication

Date de publication:
2023
Historique:
received: 20 12 2022
accepted: 21 02 2023
entrez: 27 3 2023
pubmed: 28 3 2023
medline: 28 3 2023
Statut: epublish

Résumé

Pharmaceutical wastewater frequently contains high levels of toxic pollutants. If they are discharged untreated, they pose a threat to the environment. The traditional activated sludge process and the advanced oxidation process do not sufficiently remove toxic and conventional pollutants from pharmaceutical wastewater treatment plants (PWWTPs). We designed a pilot-scale reaction system to reduce toxic organic pollutants and conventional pollutants from pharmaceutical wastewater during the biochemical reaction stage. This system included a continuous stirred tank reactor (CSTR), microbial electrolysis cells (MECs), an expanded sludge bed reactor (EGSB), and a moving bed biofilm reactor (MBBR). We used this system to further investigate the benzothiazole degradation pathway. The system effectively degraded the toxic pollutants (benzothiazole, pyridine, indole, and quinoline) and the conventional chemicals (COD, NH This study provides feasible design alternatives for PWWTPs to remove both toxic and conventional pollutants at the same time.

Identifiants

pubmed: 36970662
doi: 10.3389/fmicb.2023.1128233
pmc: PMC10034018
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1128233

Informations de copyright

Copyright © 2023 Dai, Pang, Ding, Wang, Zhang, Ren and Yang.

Déclaration de conflit d'intérêts

J-WP was employed by China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Références

Chemosphere. 2021 May;271:129593
pubmed: 33460890
Sci Total Environ. 2023 Jan 15;856(Pt 1):158977
pubmed: 36155040
Environ Sci Ecotechnol. 2022 May 03;11:100184
pubmed: 36158755
Water Res. 2017 Oct 15;123:408-419
pubmed: 28689125
Biotechnol Bioeng. 2015 Sep;112(9):1792-800
pubmed: 25854706
Sci Total Environ. 2018 Oct 15;639:1334-1348
pubmed: 29929299
Sci Total Environ. 2020 Oct 15;739:140166
pubmed: 32758957
Water Res. 2018 Apr 15;133:79-86
pubmed: 29367050
Environ Sci Ecotechnol. 2022 Oct 22;13:100208
pubmed: 36388632
J Colloid Interface Sci. 2018 Dec 15;532:236-260
pubmed: 30092507
Bioresour Technol. 2020 Oct;313:123652
pubmed: 32554152
Water Res. 2015 Apr 1;72:281-92
pubmed: 25660806
Environ Pollut. 2007 Feb;145(3):672-9
pubmed: 16996177
Water Res. 2015 Apr 15;73:56-67
pubmed: 25644628
J Environ Manage. 2021 May 1;285:112119
pubmed: 33581454
Sci Total Environ. 2019 Feb 10;650(Pt 2):2437-2445
pubmed: 30292999
Bioresour Technol. 2021 Jun;330:124958
pubmed: 33756183
Water Res. 2013 Oct 1;47(15):5511-9
pubmed: 23863387
Environ Int. 2009 Jan;35(1):162-77
pubmed: 18789530
Bioresour Technol. 2014 Feb;153:79-86
pubmed: 24355500
Water Res. 2019 Nov 1;164:114915
pubmed: 31421511
Water Res. 2017 Mar 1;110:211-217
pubmed: 28006711
Appl Environ Microbiol. 2002 Dec;68(12):6114-20
pubmed: 12450835
Water Res. 2017 Feb 1;109:114-121
pubmed: 27871050
Anal Bioanal Chem. 2011 Jan;399(1):251-75
pubmed: 21063687
J Hazard Mater. 2021 Jun 5;411:125121
pubmed: 33858096
Bioresour Technol. 2022 Oct;361:127667
pubmed: 35878778
Environ Sci Ecotechnol. 2022 Jan 25;9:100145
pubmed: 36157853
Sci Total Environ. 2020 Jul 1;724:138053
pubmed: 32247974
J Environ Manage. 2021 Dec 1;299:113532
pubmed: 34614559
Bioresour Technol. 2017 Dec;245(Pt A):1238-1244
pubmed: 28899679
J Hazard Mater. 2017 Feb 5;323(Pt A):299-310
pubmed: 27396311
Environ Sci Technol. 2018 May 1;52(9):5007-5026
pubmed: 29578695
Water Res. 2008 Jul;42(13):3385-92
pubmed: 18538367
Front Microbiol. 2021 Nov 26;12:737112
pubmed: 34899625
Chemosphere. 2015 Jul;131:117-23
pubmed: 25828067
Environ Sci Pollut Res Int. 2017 Nov;24(32):25082-25091
pubmed: 28921046

Auteurs

Wei Dai (W)

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China.

Ji-Wei Pang (JW)

China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing, China.

Jie Ding (J)

National Engineering Research Center for Bioenergy, Harbin Institute of Technology, Harbin, China.

Yu-Qian Wang (YQ)

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China.

Lu-Yan Zhang (LY)

School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China.

Nan-Qi Ren (NQ)

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China.

Shan-Shan Yang (SS)

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China.

Classifications MeSH