Land cover differentially affects abundance of common and rare birds.
National Land Cover Database
North American Breeding Bird Survey
abundance
agriculture
anthropogenic
global change
land cover change
pasture
Journal
Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
revised:
03
03
2023
received:
27
05
2022
accepted:
13
03
2023
medline:
3
5
2023
pubmed:
29
3
2023
entrez:
28
3
2023
Statut:
ppublish
Résumé
While rare species are vulnerable to global change, large declines in common species (i.e., those with large population sizes, large geographic distributions, and/or that are habitat generalists) also are of conservation concern. Understanding if and how commonness mediates species' responses to global change, including land cover change, can help guide conservation strategies. We explored avian population responses to land cover change along a gradient from common to rare species using avian data from the North American Breeding Bird Survey (BBS) and land cover data from the National Land Cover Database for the conterminous United States. Specifically, we used generalized linear mixed effects models to ask if species' commonness affected the relationship between land cover and counts, using the initial amount of and change in land cover surrounding each North American BBS route from 2001 to 2016. We quantified species' commonness as a continuous metric at the national scale using the logarithm (base 10) of each species' total count across all routes in the conterminous United States in 2001. For our focal 15-year period, we found that higher proportions of initial natural land cover favored (i.e., were correlated with higher) counts of rare but not common species. We also found that commonness mediated how change in human land cover, but not natural land cover, was associated with species' counts at the end of the study period. Increases in developed lands did not favor counts of any species. Increases in agriculture and declines in pasture favored counts of common but not rare species. Our findings show a signal of commonness in how species respond to a major dimension of global change. Evaluating how and why commonness mediates species' responses to land cover change can help managers design conservation portfolios that sustain the spectrum of common to rare species.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2999-3009Subventions
Organisme : U.S. Geological Survey
Informations de copyright
© 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Références
Albright, T. P., Pidgeon, A. M., Rittenhouse, C. D., Clayton, M. K., Wardlow, B. D., Flather, C. H., Culbert, P. D., & Radeloff, V. C. (2010). Combined effects of heat waves and droughts on avian communities across the conterminous United States. Ecosphere, 1(5), art12. https://doi.org/10.1890/es10-00057.1
Ausprey, I. J., & Rodewald, A. D. (2011). Postfledging survivorship and habitat selection across a rural-to-urban landscape gradient. The Auk, 128(2), 293-302.
Baker, D. J., Garnett, S. T., O'Connor, J., Ehmke, G., Clarke, R. H., Woinarski, J. C. Z., & McGeoch, M. A. (2019). Conserving the abundance of nonthreatened species. Conservation Biology, 33(2), 319-328. https://doi.org/10.1111/cobi.13197
Barzan, F. R., Bellis, L. M., & Dardanelli, S. (2021). Livestock grazing constrains bird abundance and species richness: A global meta-analysis. Basic and Applied Ecology, 56, 289-298. https://doi.org/10.1016/j.baae.2021.08.007
Beissinger, S. R., & Riddell, E. A. (2021). Why are species' traits weak predictors of range shifts? Annual Review of Ecology, Evolution, and Systematics, 52, 47-66. https://doi.org/10.1146/annurev-ecolsys-012021-092849
BirdLife International. (2021). Protecting birds where they live and migrate protecting the most important habitats for birds. https://www.birdlife.org/projects/ibas-mapping-most-important-places/
Brennan, L. A., & Kuvlesky, W. P., Jr. (2005). North American grassland birds: An unfolding conservation crisis? The Journal of Wildlife Management, 69(1), 1-13. https://doi.org/10.2193/0022-541X(2005)069<0001:NAGBAU>2.0.CO;2
Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M., & Bolker, B. M. (2017). GlmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9(2), 378-400.
Burns, F., Eaton, M. A., Burfield, I. J., Klvaňová, A., Šilarová, E., Staneva, A., & Gregory, R. D. (2021). Abundance decline in the avifauna of the European Union reveals cross-continental similarities in biodiversity change. Ecology and Evolution, 11(23), 16647-16660. https://doi.org/10.1002/ece3.8282
Coates, P. S., Brussee, B. E., Howe, K. B., Fleskes, J. P., Dwight, I. A., Connelly, D. P., Meshriy, M. G., & Gardner, S. C. (2017). Long-term and widespread changes in agricultural practices influence ring-necked pheasant abundance in California. Ecology and Evolution, 7(8), 2546-2559. https://doi.org/10.1002/ece3.2675
Cooper, A. R., Tsang, Y., Infante, D. M., Daniel, W. M., McKerrow, A. J., Wieferich, D., & Thuiller, W. (2019). Protected areas lacking for many common fluvial fishes of the conterminous USA. Diversity and Distributions, 25(8), 1289-1303. https://doi.org/10.1111/ddi.12937
Dalecki, M., & Willits, F. K. (1991). Examining change using regression analysis: Three approaches compared. Sociological Spectrum, 11(2), 127-145. https://doi.org/10.1080/02732173.1991.9981960
Daskalova, G. N., Myers-Smith, I. H., & Godlee, J. L. (2020). Rare and common vertebrates span a wide spectrum of population trends. Nature Communications, 11(1), 4394. https://doi.org/10.1038/s41467-020-17779-0
Derner, J. D., Lauenroth, W. K., Stapp, P., & Augustine, D. J. (2009). Livestock as ecosystem engineers for grassland bird habitat in the Western Great Plains of North America. Rangeland Ecology & Management, 62(2), 111-118. https://doi.org/10.2111/08-008.1
Dewitz, J. (2019). National Land Cover Database (NLCD) 2016 products. 10.5066/P96HHBIE.
Di Cecco, G. J., & Hurlbert, A. H. (2022). Anthropogenic drivers of avian community turnover from local to regional scales. Global Change Biology, 28, 770-781. https://doi.org/10.1111/gcb.15967
Directorate-General for Agriculture and Rural Development. (2023). New CAP: 2023-27. The New Common Agricultural Policy: 2023-27. https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/new-cap-2023-27_en
Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B., & Collen, B. (2014). Defaunation in the Anthropocene. Science, 345(6195), 401-406.
Donald, P. F., Green, R. E., & Heath, M. F. (2001). Agricultural intensification and the collapse of Europe's farmland bird populations. Proceedings of the Biological Sciences, 268(1462), 25-29. https://doi.org/10.1098/rspb.2000.1325
Donald, P. F., Sanderson, F. J., Burfield, I. J., & van Bommel, F. P. J. (2006). Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990-2000. Agriculture, Ecosystems & Environment, 116(3-4), 189-196. https://doi.org/10.1016/j.agee.2006.02.007
Dornelas, M., Gotelli, N. J., Shimadzu, H., Moyes, F., Magurran, A. E., & McGill, B. J. (2019). A balance of winners and losers in the Anthropocene. Ecology Letters, 22(5), 847-854. https://doi.org/10.1111/ele.13242
Ellison, A. M. (2019). Foundation species, non-trophic interactions, and the value of being common. IScience, 13, 254-268. https://doi.org/10.1016/j.isci.2019.02.020
Farm Bill Brochure. (2020). FWS.Gov. https://www.fws.gov/media/farm-bill-brochure
Fidino, M., Gallo, T., Lehrer, E. W., Murray, M. H., Kay, C. A. M., Sander, H. A., MacDougall, B., Salsbury, C. M., Ryan, T. J., Angstmann, J. L., Amy Belaire, J., Dugelby, B., Schell, C. J., Stankowich, T., Amaya, M., Drake, D., Hursh, S. H., Ahlers, A. A., Williamson, J., … Magle, S. B. (2021). Landscape-scale differences among cities alter common species' responses to urbanization. Ecological Applications, 31(2), e02253. https://doi.org/10.1002/eap.2253.
Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2011). Applied longitudinal analysis (2nd ed.). John Wiley & Sons, Inc.
Flather, C. H., & Sauer, J. R. (1996). Using landscape ecology to test hypotheses about large-scale abundance patterns in migratory birds. Ecology, 77(1), 28-35.
Flather, C. H., & Sieg, C. H. (2013). Species rarity: Definition, causes, and classification. In M. G. Raphael & N. Molina (Eds.), Conservation of rare or little-known species: Biological, social, and economic considerations (p. 389). Island Press.
Foden, W. B., Butchart, S. H., Stuart, S. N., Vie, J. C., Akcakaya, H. R., Angulo, A., DeVantier, L. M., Gutsche, A., Turak, E., Cao, L., Donner, S. D., Katariya, V., Bernard, R., Holland, R. A., Hughes, A. F., O'Hanlon, S. E., Garnett, S. T., Sekercioglu, C. H., & Mace, G. M. (2013). Identifying the world's most climate change vulnerable species: A systematic trait-based assessment of all birds, amphibians and corals. PLoS One, 8(6), e65427. https://doi.org/10.1371/journal.pone.0065427
Foden, W. B., Young, B. E., Akçakaya, H. R., Garcia, R. A., Hoffmann, A. A., Stein, B. A., Thomas, C. D., Wheatley, C. J., Bickford, D., Carr, J. A., Hole, D. G., Martin, T. G., Pacifici, M., Pearce-Higgins, J. W., Platts, P. J., Visconti, P., Watson, J. E. M., & Huntley, B. (2018). Climate change vulnerability assessment of species. WIREs Climate Change, 10(1), e551. https://doi.org/10.1002/wcc.551
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O'Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockstrom, J., Sheehan, J., Siebert, S., … Zaks, D. P. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337-342. https://doi.org/10.1038/nature10452
Fox, J., & Weisberg, S. (2019). An R companion to applied regression (3rd edition). Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/
Frimpong, E. A. (2018). A case for conserving common species. PLoS Biology, 16(2), e2004261. https://doi.org/10.1371/journal.pbio.2004261
Fuhlendorf, S. D., & Engle, D. M. (2001). Restoring heterogeneity on rangelands: Ecosystem management based on evolutionary grazing patterns: We propose a paradigm that enhances heterogeneity instead of homogeneity to promote biological diversity and wildlife habitat on rangelands grazed by livestock. Bioscience, 51(8), 625-632. https://doi.org/10.1641/0006-3568(2001)051[0625:RHOREM]2.0.CO;2
Gao, J., & O'Neill, B. C. (2020). Mapping global urban land for the 21st century with data-driven simulations and shared socioeconomic pathways. Nature Communications, 11(1), 2302. https://doi.org/10.1038/s41467-020-15788-7
Gaston, K. J. (2010). Valuing common species. Science, 327, 154-155.
Gaston, K. J. (2011). Common ecology. Bioscience, 61(5), 354-362. https://doi.org/10.1525/bio.2011.61.5.4
Gaston, K. J., & Blackburn, T. M. (2000). Pattern and process in macroecology.
Gaston, K. J., Cox, D. T. C., Canavelli, S. B., Garcia, D., Hughes, B., Maas, B., Martinez, D., Ogada, D., & Inger, R. (2018). Population abundance and ecosystem service provision: The case of birds. Bioscience, 68(4), 264-272. https://doi.org/10.1093/biosci/biy005
Gaston, K. J., & Fuller, R. A. (2008). Commonness, population depletion and conservation biology. Trends in Ecology & Evolution, 23(1), 14-19. https://doi.org/10.1016/j.tree.2007.11.001
Godet, L., Gaüzere, P., Jiguet, F., & Devictor, V. (2015). Dissociating several forms of commonness in birds sheds new light on biotic homogenization. Global Ecology and Biogeography, 24(4), 416-426. https://doi.org/10.1111/geb.12266
Homer, C., Dewitz, J., Jin, S. M., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M., Wickham, J., Stehman, S., Auch, R., & Riitters, K. (2020). Conterminous United States land cover change patterns 2001-2016 from the 2016 National Land Cover Database. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 184-199. https://doi.org/10.1016/j.isprsjprs.2020.02.019
Hurt, R. D. (2002). American agriculture: A brief history. Purdue University Press.
Inger, R., Gregory, R., Duffy, J. P., Stott, I., Vorisek, P., & Gaston, K. J. (2015). Common European birds are declining rapidly while less abundant species' numbers are rising. Ecology Letters, 18(1), 28-36. https://doi.org/10.1111/ele.12387
Jansen, F., Bonn, A., Bowler, D. E., Bruelheide, H., & Eichenberg, D. (2019). Moderately common plants show highest relative losses. Conservation Letters, 13(1), e12674. https://doi.org/10.1111/conl.12674
Jarzyna, M. A., & Jetz, W. (2017). A near half-century of temporal change in different facets of avian diversity. Global Change Biology, 23(8), 2999-3011. https://doi.org/10.1111/gcb.13571
Kastner, T., Matej, S., Forrest, M., Gingrich, S., Haberl, H., Hickler, T., Krausmann, F., Lasslop, G., Niedertscheider, M., Plutzar, C., Schwarzmüller, F., Steinkamp, J., & Erb, K.-H. (2022). Land use intensification increasingly drives the spatiotemporal patterns of the global human appropriation of net primary production in the last century. Global Change Biology, 28(1), 307-322. https://doi.org/10.1111/gcb.15932
Kendall, W. L., Peterjohn, B. G., & Sauer, J. R. (1996). First-time observer effects in the North American Breeding Bird Survey. The Auk, 113(4), 823-829.
Li, Y., Miao, R., & Khanna, M. (2020). Neonicotinoids and decline in bird biodiversity in the United States. Nature Sustainability, 3(12), 1027-1035. https://doi.org/10.1038/s41893-020-0582-x
Liang, C., Yang, G., Wang, N., Feng, G., Yang, F., Svenning, J.-C., & Yang, J. (2019). Taxonomic, phylogenetic and functional homogenization of bird communities due to land use change. Biological Conservation, 236, 37-43. https://doi.org/10.1016/j.biocon.2019.05.036
Lindenmayer, D. B., Wood, J. T., McBurney, L., MacGregor, C., Youngentob, K., & Banks, S. C. (2011). How to make a common species rare: A case against conservation complacency. Biological Conservation, 144(5), 1663-1672. https://doi.org/10.1016/j.biocon.2011.02.022
McCarthy, D. P., Donald, P. F., Scharlemann, J. P. W., Buchanan, G. M., Balmford, A., Green, J. M. H., Bennun, L. A., Burgess, N. D., Fishpool, L. D. C., Garnett, S. T., Leonard, D. L., Maloney, R. F., Morling, P., Schaefer, H. M., Symes, A., Wiedenfeld, D. A., & Butchart, S. H. M. (2012). Financial costs of meeting global biodiversity conservation targets: Current spending and unmet needs. Science, 338(6109), 46-949. https://doi.org/10.1126/science.1229803
McGill, B. J., Dornelas, M., Gotelli, N. J., & Magurran, A. E. (2015). Fifteen forms of biodiversity trend in the Anthropocene. Trends in Ecology & Evolution, 30(2), 104-113. https://doi.org/10.1016/j.tree.2014.11.006
McWilliam, M., Dornelas, M., Álvarez-Noriega, M., Baird, A. H., Connolly, S. R., & Madin, J. S. (2023). Net effects of life-history traits explain persistent differences in abundance among similar species. Ecology, 104(1), e3863. https://doi.org/10.1002/ecy.3863
NABCI, B. S. C. (2014). Bird Conservation Regions (B. S. C. on behalf of the N. A. B. C. Initiative, Ed.). http://www.birdscanada.org/research/gislab/index.jsp?targetpg=bcr
Navedo, J. G., & Piersma, T. (2023). Do 50-year-old Ramsar criteria still do the best possible job? A plea for broadened scientific underpinning of the global protection of wetlands and migratory waterbirds. Conservation Letters, e12941. https://doi.org/10.1111/conl.12941
Neeson, T. M., Doran, P. J., Ferris, M. C., Fitzpatrick, K. B., Herbert, M., Khoury, M., Moody, A. T., Ross, J., Yacobson, E., & McIntyre, P. B. (2018). Conserving rare species can have high opportunity costs for common species. Global Change Biology, 24(8), 3862-3872. https://doi.org/10.1111/gcb.14162
Newbold, T., Hudson, L. N., Hill, S. L., Contu, S., Lysenko, I., Senior, R. A., Borger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Diaz, S., Echeverria-Londono, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L., Alhusseini, T., … Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45-50. https://doi.org/10.1038/nature14324
Pacifici, M., Rondinini, C., Rhodes, J. R., Burbidge, A. A., Cristiano, A., Watson, J. E. M., Woinarski, J. C. Z., & Di Marco, M. (2020). Global correlates of range contractions and expansions in terrestrial mammals. Nature Communications, 11(1), 2840. https://doi.org/10.1038/s41467-020-16684-w
Pardieck, K. L., Ziolkowski, D. J., Jr., Lutmerding, M., Aponte, V. I., & Hudson, M.-A. R. (2020). North American Breeding Bird Survey Dataset 1966-2019 (U.S. G. Survey, Ed. & Trans.; 2018.0). https://doi.org/10.5066/P9J6QUF6
Pereira, H. M., & Daily, G. C. (2006). Modeling biodiversity dynamics in countryside landscapes. Ecology, 87(8), 1877-1885. https://doi.org/10.1890/0012-9658(2006)87[1877:mbdicl]2.0.co;2
Pereira, H. M., Daily, G. C., & Roughgarden, J. (2004). A framework for assessing the relative vulnerability of species to land-use change. Ecological Applications, 14(3), 730-742. https://doi.org/10.1890/02-5405
Pereira, H. M., Navarro, L. M., & Martins, I. S. (2012). Global biodiversity change: The bad, the good, and the unknown. Annual Review of Environment and Resources, 37, 25. https://doi.org/10.1146/annurev-environ-042911-093511
Phalan, B., Onial, M., Balmford, A., & Green, R. E. (2011). Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science, 333(6047), 1289-1291. https://doi.org/10.1126/science.1208742
Phelps, J., Carrasco, L. R., Webb, E. L., Koh, L. P., & Pascual, U. (2013). Agricultural intensification escalates future conservation costs. Proceedings of the National Academy of Sciences of the United States of America, 110(19), 7601-7606. https://doi.org/10.1073/pnas.1220070110
Prūse, B., Kalle, R., Buffa, G., Simanova, A., Mežaka, I., & Sõukand, R. (2021). We need to appreciate common synanthropic plants before they become rare: Case study in Latgale (Latvia). Ethnobiology and Conservation, 10, 11. https://doi.org/10.15451/ec2020-12-10.11-1-26
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rabinowitz, D. (1981). Seven forms of rarity. In H. Synge (Ed.), The biological aspects of rare plant conservation (pp. 205-217). John Wiley & Sons.
Reinermann, S., Asam, S., & Kuenzer, C. (2020). Remote sensing of grassland production and management-A review. Remote Sensing, 12(12), 12. https://doi.org/10.3390/rs12121949
Rittenhouse, C. D., Pidgeon, A. M., Albright, T. P., Culbert, P. D., Clayton, M. K., Flather, C. H., Masek, J. G., & Radeloff, V. C. (2012). Land-cover change and avian diversity in the conterminous United States. Conservation Biology, 26(5), 821-829. https://doi.org/10.1111/j.1523-1739.2012.01867.x
Robbins, C. S., Sauer, J. R., Greenberg, R. S., & Droege, S. (1989). Population declines in north American birds that migrate to the neotropics. Proceedings of the National Academy of Sciences of the United States of America, 86(19), 7658-7662. https://doi.org/10.1073/pnas.86.19.7658
Rodrigues, A. S. L. (2006). Are global conservation efforts successful? Science, 313(5790), 1051-1052.
Rosenberg, K. V., Dokter, A. M., Blancher, P. J., Sauer, J. R., Smith, A. C., Smith, P. A., Stanton, J. C., Panjabi, A., Helft, L., Parr, M., & Marra, P. P. (2019). Decline of the north American avifauna. Science, 366(6461), 120-124. https://doi.org/10.1126/science.aaw1313
Samson, F. B., Knopf, F. L., & Ostlie, W. R. (2004). Great Plains ecosystems: Past, present, and future. Wildlife Society Bulletin, 32(1), 6-15. https://doi.org/10.2193/0091-7648(2004)32[6:GPEPPA]2.0.CO;2
Sauer, J. R., Pardieck, K. L., Ziolkowski, D. J., Smith, A. C., Hudson, M.-A. R., Rodriguez, V., Berlanga, H., Niven, D. K., & Link, W. A. (2017). The first 50 years of the north American breeding bird survey. The Condor, 119(3), 576-593. https://doi.org/10.1650/condor-17-83.1
Schipper, A. M., Belmaker, J., de Miranda, M. D., Navarro, L. M., Bohning-Gaese, K., Costello, M. J., Dornelas, M., Foppen, R., Hortal, J., Huijbregts, M. A., Martin-Lopez, B., Pettorelli, N., Queiroz, C., Rossberg, A. G., Santini, L., Schiffers, K., Steinmann, Z. J., Visconti, P., Rondinini, C., & Pereira, H. M. (2016). Contrasting changes in the abundance and diversity of north American bird assemblages from 1971 to 2010. Global Change Biology, 22(12), 3948-3959. https://doi.org/10.1111/gcb.13292
Schmitz, C., van Meijl, H., Kyle, P., Nelson, G. C., Fujimori, S., Gurgel, A., Havlik, P., Heyhoe, E., d'Croz, D. M., Popp, A., Sands, R., Tabeau, A., van der Mensbrugghe, D., von Lampe, M., Wise, M., Blanc, E., Hasegawa, T., Kavallari, A., & Valin, H. (2014). Land-use change trajectories up to 2050: Insights from a global agro-economic model comparison. Agricultural Economics, 45(1), 69-84. https://doi.org/10.1111/agec.12090
Sofaer, H. R., Flather, C. H., Jarnevich, C. S., Davis, K. P., & Pejchar, L. (2020). Human-associated species dominate passerine communities across the United States. Global Ecology and Biogeography, 29(5), 885-895. https://doi.org/10.1111/geb.13071
Stanton, R. L., Morrissey, C. A., & Clark, R. G. (2018). Analysis of trends and agricultural drivers of farmland bird declines in North America: A review. Agriculture, Ecosystems & Environment, 254, 244-254. https://doi.org/10.1016/j.agee.2017.11.028
Staude, I. R., Navarro, L. M., & Pereira, H. M. (2020). Range size predicts the risk of local extinction from habitat loss. Global Ecology and Biogeography, 29(1), 16-25. https://doi.org/10.1111/geb.13003
Storch, D., Koleček, J., Keil, P., Vermouzek, Z., Voříšek, P., & Reif, J. (2023). Decomposing trends in bird populations: Climate, life histories and habitat affect different aspects of population change. Diversity and Distributions, 572-585. https://doi.org/10.1111/ddi.13682
Stork, N. E., Coddington, J. A., Colwell, R. K., Chazdon, R. L., Dick, C. W., Peres, C. A., Sloan, S., & Willis, K. (2009). Vulnerability and resilience of tropical forest species to land-use change. Conservation Biology, 23(6), 1438-1447. https://doi.org/10.1111/j.1523-1739.2009.01335.x
Sutherland, G. D., Harestad, A. S., Price, K., & Lertzman, K. P. (2000). Scaling of natal dispersal distances in terrestrial birds and mammals. Conservation Ecology, 4(1), 16.
Theobald, D. M., Kennedy, C., Chen, B., Oakleaf, J., Baruch-Mordo, S., & Kiesecker, J. (2020). Earth transformed: Detailed mapping of global human modification from 1990 to 2017. Earth System Science Data, 12(3), 1953-1972. https://doi.org/10.5194/essd-12-1953-2020
Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20260-20264. https://doi.org/10.1073/pnas.1116437108
Tobias, J. A., Sheard, C., Pigot, A. L., Devenish, A. J. M., Yang, J. Y., Sayol, F., Neate-Clegg, M. H. C., Alioravainen, N., Weeks, T. L., Barber, R. A., Walkden, P. A., MacGregor, H. E. A., Jones, S. E. I., Vincent, C., Phillips, A. G., Marples, N. M., Montano-Centellas, F. A., Leandro-Silva, V., Claramunt, S., … Schleuning, M. (2022). AVONET: Morphological, ecological and geographical data for all birds. Ecology Letters, 25(3), 581-597. https://doi.org/10.1111/ele.13898
Turner, W. R. (2006). Interactions among spatial scales constrain species distributions in fragmented urban landscapes. Ecology and Society, 11(2), 1-16. https://www.jstor.org/stable/26265999
van Asselen, S., & Verburg, P. H. (2013). Land cover change or land-use intensification: Simulating land system change with a global-scale land change model. Global Change Biology, 19(12), 3648-3667. https://doi.org/10.1111/gcb.12331
Van Dyck, H., Van Strien, A. J., Maes, D., & Van Swaay, C. A. M. (2009). Declines in common, widespread butterflies in a landscape under intense human use. Conservation Biology, 23(4), 957-965. https://doi.org/10.1111/j.1523-1739.2009.01175.x
Wheatley, C. J., Beale, C. M., Bradbury, R. B., Pearce-Higgins, J. W., Critchlow, R., & Thomas, C. D. (2017). Climate change vulnerability for species-Assessing the assessments. Global Change Biology, 23(9), 3704-3715. https://doi.org/10.1111/gcb.13759
Wickham, J., Homer, C., Vogelmann, J., McKerrow, A., Mueller, R., Herold, N., & Coulston, J. (2014). The multi-resolution land characteristics (MRLC) consortium-20 years of development and integration of USA national land cover data. Remote Sensing, 6(8), 7424-7441. https://doi.org/10.3390/rs6087424
Wright, C. K., & Wimberly, M. C. (2013). Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 4134-4139. https://doi.org/10.1073/pnas.1215404110
Young, H. S., McCauley, D. J., Galetti, M., & Dirzo, R. (2016). Patterns, causes, and consequences of Anthropocene defaunation. Annual Review of Ecology, Evolution, and Systematics, 47(1), 333-358. https://doi.org/10.1146/annurev-ecolsys-112414-054142
Yu, J. P., & Dobson, F. S. (2000). Seven forms of rarity in mammals. Journal of Biogeography, 27(1), 131-139. https://doi.org/10.1046/j.1365-2699.2000.00366.x
Zabel, F., Delzeit, R., Schneider, J. M., Seppelt, R., Mauser, W., & Vaclavik, T. (2019). Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nature Communications, 10, 2844. https://doi.org/10.1038/s41467-019-10775-z
Zhang, W., Sheldon, B. C., Grenyer, R., & Gaston, K. J. (2021). Habitat change and biased sampling influence estimation of diversity trends. Current Biology, 31(16), 3656-3662.e3. https://doi.org/10.1016/j.cub.2021.05.066