Molecular Mechanisms for the Carnosine-Induced Activation of Muscle-Brain Interaction.

carnosine exosomes gut–brain interaction miRNAs muscle–brain interaction neuronal cells

Journal

Nutrients
ISSN: 2072-6643
Titre abrégé: Nutrients
Pays: Switzerland
ID NLM: 101521595

Informations de publication

Date de publication:
19 Mar 2023
Historique:
received: 07 03 2023
accepted: 10 03 2023
medline: 30 3 2023
entrez: 29 3 2023
pubmed: 30 3 2023
Statut: epublish

Résumé

Carnosine is known to improve brain function. The molecular basis for the carnosine-mediated interaction between intestinal cells and neuronal cells is that carnosine acts on intestinal cells and stimulates exosome secretion, which can induce neurite outgrowth in neuronal cells. This study aimed to infer the carnosine-mediated interaction between muscle cells and neuronal cells. The results revealed that carnosine induces muscle cell differentiation, as well as the secretion of exosomes and myokines that can act on neuronal cells. Carnosine acts not only on intestinal cells but also on muscle cells, stimulating the secretion of secretory factors including exosomes that induce neurite outgrowth in neuronal cells, as well as myokines known to be involved in neuronal cell activation. As the miRNAs in exosomes secreted from intestinal cells and muscle cells upon carnosine treatment are different, it could be assumed that carnosine acts on each cell to interact with neuronal cell through separate factors and mechanisms.

Identifiants

pubmed: 36986209
pii: nu15061479
doi: 10.3390/nu15061479
pmc: PMC10057344
pii:
doi:

Substances chimiques

Carnosine 8HO6PVN24W
MicroRNAs 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Japan Society for the Promotion of Science
ID : 21H2141

Références

Neuropharmacology. 2021 Oct 1;197:108744
pubmed: 34363812
PLoS One. 2019 May 28;14(5):e0217394
pubmed: 31136600
Nat Protoc. 2009;4(1):44-57
pubmed: 19131956
Nature. 2009 Apr 23;458(7241):1056-60
pubmed: 19262508
J Agric Food Chem. 2020 Feb 5;68(5):1306-1314
pubmed: 31957433
Aging Dis. 2018 Jun 1;9(3):334-345
pubmed: 29896423
Nucleic Acids Res. 2009 Jan;37(1):1-13
pubmed: 19033363
Sci Rep. 2017 Oct 17;7(1):13313
pubmed: 29042678
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Physiol Rev. 2013 Oct;93(4):1803-45
pubmed: 24137022
J Alzheimers Dis. 2013;33(4):983-97
pubmed: 23099816
J Alzheimers Dis. 2015;50(1):149-59
pubmed: 26682691
Nutrients. 2017 Oct 31;9(11):
pubmed: 29088099
Int J Mol Sci. 2021 Apr 26;22(9):
pubmed: 33925862
Nutrients. 2021 Jul 25;13(8):
pubmed: 34444704
Nutrients. 2021 Jun 18;13(6):
pubmed: 34207142
Stem Cells. 2017 Jul;35(7):1815-1834
pubmed: 28480592
Front Cell Dev Biol. 2022 Sep 07;10:951837
pubmed: 36158193
Int J Mol Sci. 2022 Aug 16;23(16):
pubmed: 36012444
PLoS Biol. 2004 Oct;2(10):e348
pubmed: 15486583
Med Sci Sports Exerc. 2019 Oct;51(10):2098-2108
pubmed: 31083045
Bioinformatics. 2003 Jan 22;19(2):185-93
pubmed: 12538238
Front Neurosci. 2022 Dec 08;16:1060556
pubmed: 36570840
Int J Mol Sci. 2022 Oct 17;23(20):
pubmed: 36293266

Auteurs

Asuka Ishibashi (A)

Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan.

Miyako Udono (M)

Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.

Mikako Sato (M)

R&D Center, NH Foods, Ltd., Tsukuba 300-2626, Japan.

Yoshinori Katakura (Y)

Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan.
Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.

Articles similaires

1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
alpha-Synuclein Humans Animals Mice Lewy Body Disease
Animals Optogenetics Visual Cortex Neurons Mice

Classifications MeSH