Deep learning-based detection of patients with bone metastasis from Japanese radiology reports.


Journal

Japanese journal of radiology
ISSN: 1867-108X
Titre abrégé: Jpn J Radiol
Pays: Japan
ID NLM: 101490689

Informations de publication

Date de publication:
Aug 2023
Historique:
received: 16 11 2022
accepted: 07 03 2023
medline: 23 10 2023
pubmed: 30 3 2023
entrez: 29 3 2023
Statut: ppublish

Résumé

Deep learning (DL) is a state-of-the-art technique for developing artificial intelligence in various domains and it improves the performance of natural language processing (NLP). Therefore, we aimed to develop a DL-based NLP model that classifies the status of bone metastasis (BM) in radiology reports to detect patients with BM. The DL-based NLP model was developed by training long short-term memory using 1,749 free-text radiology reports written in Japanese. We adopted five-fold cross-validation and used 200 reports for testing the five models. The accuracy, sensitivity, specificity, precision, and area under the receiver operating characteristics curve (AUROC) were used for the model evaluation. The developed model demonstrated classification performance with mean ± standard deviation of 0.912 ± 0.012, 0.924 ± 0.029, 0.901 ± 0.014, 0.898 ± 0.012, and 0.968 ± 0.004 for accuracy, sensitivity, specificity, precision, and AUROC, respectively. The proposed DL-based NLP model may help in the early and efficient detection of patients with BM.

Identifiants

pubmed: 36988827
doi: 10.1007/s11604-023-01413-2
pii: 10.1007/s11604-023-01413-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

900-908

Subventions

Organisme : Japan Society for the Promotion of Science
ID : JP18K15567

Informations de copyright

© 2023. The Author(s) under exclusive licence to Japan Radiological Society.

Références

Savova GK, Danciu I, Alamudun F, Miller T, Lin C, Bitterman DS, et al. Use of natural language processing to extract clinical cancer phenotypes from electronic medical records. Cancer Res. 2019;79(21):5463–70.
doi: 10.1158/0008-5472.CAN-19-0579 pubmed: 31395609 pmcid: 7227798
Bao Y, Deng Z, Wang Y, Kim H, Armengol VD, Acevedo F, et al. Using machine learning and natural language processing to review and classify the medical literature on cancer susceptibility genes. JCO Clin Cancer Inform. 2019;3:1–9.
doi: 10.1200/CCI.19.00042 pubmed: 31545655
Hughes KS, Zhou J, Bao Y, Singh P, Wang J, Yin K. Natural language processing to facilitate breast cancer research and management. Breast J. 2020;26(1):92–9.
doi: 10.1111/tbj.13718 pubmed: 31854067
Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, et al. Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc. 2010;17(5):507–13.
doi: 10.1136/jamia.2009.001560 pubmed: 20819853 pmcid: 2995668
Dang NC, Moreno-García MN, De la Prieta F. Sentiment analysis based on deep learning: a comparative study. Electronics. 2020;9(3):483.
doi: 10.3390/electronics9030483
Yim WW, Yetisgen M, Harris WP, Kwan SW. natural language processing in oncology: a review. JAMA Oncol. 2016;2(6):797–804.
doi: 10.1001/jamaoncol.2016.0213 pubmed: 27124593
Fu S, Wyles CC, Osmon DR, Carvour ML, Sagheb E, Ramazanian T, et al. Automated detection of periprosthetic joint infections and data elements using natural language processing. J Arthroplasty. 2021;36(2):688–92.
doi: 10.1016/j.arth.2020.07.076 pubmed: 32854996
Zhang K, Demner-Fushman D. Automated classification of eligibility criteria in clinical trials to facilitate patient-trial matching for specific patient populations. J Am Med Inform Assoc. 2017;24(4):781–7.
doi: 10.1093/jamia/ocw176 pubmed: 28339690 pmcid: 6080677
Cancer Statistics. Cancer Information Service, National Cancer Center, Japan (National Cancer Registry, Ministry of Health, Labour and Welfare). https://www.mhlw.go.jp/content/10900000/000942181.pdf . Accessed 23 Mar 2023
Hara H, Sakai Y, Kawamoto T, Fukase N, Kawakami Y, Takemori T, et al. Surgical outcomes of metastatic bone tumors in the extremities (Surgical outcomes of bone metastases). J Bone Oncol. 2021;27:100352.
doi: 10.1016/j.jbo.2021.100352 pubmed: 33850700 pmcid: 8039818
Ulas A, Bilici A, Durnali A, Tokluoglu S, Akinci S, Silay K, et al. Risk factors for skeletal-related events (SREs) and factors affecting SRE-free survival for nonsmall cell lung cancer patients with bone metastases. Tumour Biol. 2016;37(1):1131–40.
doi: 10.1007/s13277-015-3907-z pubmed: 26276360
Callen JL, Westbrook JI, Georgiou A, Li J. Failure to follow-up test results for ambulatory patients: a systematic review. J Gen Intern Med. 2012;27(10):1334–48.
doi: 10.1007/s11606-011-1949-5 pubmed: 22183961
Poon EG, Gandhi TK, Sequist TD, Murff HJ, Karson AS, Bates DW. I wish I had seen this test result earlier: dissatisfaction with test result management systems in primary care. Arch Intern Med. 2004;164(20):2223–8.
doi: 10.1001/archinte.164.20.2223 pubmed: 15534158
Singh H, Sethi S, Raber M, Petersen LA. Errors in cancer diagnosis: current understanding and future directions. J Clin Oncol. 2007;25(31):5009–18.
doi: 10.1200/JCO.2007.13.2142 pubmed: 17971601
Do RK, Lupton K, Causa Andrieu PI, Luthra A, Taya M, Batch K, et al. Patterns of metastatic disease in patients with cancer derived from natural language processing of structured CT radiology reports over a 10-year period. Radiology. 2021;301(1):115–22.
doi: 10.1148/radiol.2021210043 pubmed: 34342503
Kehl KL, Elmarakeby H, Nishino M, Van Allen EM, Lepisto EM, Hassett MJ, et al. Assessment of deep natural language processing in ascertaining oncologic outcomes from radiology reports. JAMA Oncol. 2019;5(10):1421–9.
doi: 10.1001/jamaoncol.2019.1800 pubmed: 31343664 pmcid: 6659158
MeCab: Yet Another Part-of-Speech and Morphological Analyzer. https://taku910.github.io/mecab/ . Accessed 12 May 2022
MANBYO Dictonary. Large-scale disease name dictionary for tabulating and analyzing diesase names acutually used in clinical settings. https://sociocom.jp/~data/2018-manbyo/index.html . Accessed 12 May 2022
Wu S, Roberts K, Datta S, Du J, Ji Z, Si Y, et al. Deep learning in clinical natural language processing: a methodical review. J Am Med Inform Assoc. 2020;27(3):457–70.
doi: 10.1093/jamia/ocz200 pubmed: 31794016
Yu Y, Si X, Hu C, Zhang J. A review of recurrent neural networks: lstm cells and network architectures. Neural Comput. 2019;31(7):1235–70.
doi: 10.1162/neco_a_01199 pubmed: 31113301
Han S, Oh JS, Lee JJ. Diagnostic performance of deep learning models for detecting bone metastasis on whole-body bone scan in prostate cancer. Eur J Nucl Med Mol Imaging. 2022;49(2):585–95.
doi: 10.1007/s00259-021-05481-2 pubmed: 34363089
Zhao Z, Pi Y, Jiang L, Xiang Y, Wei J, Yang P, et al. Deep neural network based artificial intelligence assisted diagnosis of bone scintigraphy for cancer bone metastasis. Sci Rep. 2020;10(1):17046.
doi: 10.1038/s41598-020-74135-4 pubmed: 33046779 pmcid: 7550561
Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, et al. Bone metastases: an overview. Oncol Rev. 2017;11(1):321.
pubmed: 28584570 pmcid: 5444408
Jang M, Kim M, Bae SJ, Lee SH, Koh JM, Kim N. Opportunistic osteoporosis screening using chest radiographs with deep learning: development and external validation with a cohort dataset. J Bone Miner Res. 2022;37(2):369–77.
doi: 10.1002/jbmr.4477 pubmed: 34812546
Rizk B, Brat H, Zille P, Guillin R, Pouchy C, Adam C, et al. Meniscal lesion detection and characterization in adult knee MRI: A deep learning model approach with external validation. Phys Med. 2021;83:64–71.
doi: 10.1016/j.ejmp.2021.02.010 pubmed: 33714850
Nguyen Q-N, Chun SG, Chow E, Komaki R, Liao Z, Zacharia R, et al. Single-fraction stereotactic vs conventional multifraction radiotherapy for pain relief in patients with predominantly nonspine bone metastases. JAMA Oncol. 2019;5(6):665.
doi: 10.1001/jamaoncol.2019.0192
Palma DA, Olson R, Harrow S, Gaede S, Louie AV, Haasbeek C, et al. Stereotactic ablative radiotherapy for the comprehensive treatment of oligometastatic cancers: long-term results of the sabr-comet phase ii randomized trial. J Clin Oncol. 2020;38(25):2830–8.
doi: 10.1200/JCO.20.00818 pubmed: 32484754 pmcid: 7460150
Kawazoe Y, Shibata D, Shinohara E, Aramaki E, Ohe K. A clinical specific bert developed using a huge Japanese clinical text corpus. PLoS ONE. 2021;16(11):0259763.
doi: 10.1371/journal.pone.0259763

Auteurs

Kentaro Doi (K)

Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-Shi, Osaka, Japan.
Department of Radiology, Kansai Medical University Graduate School of Medicine, 2-5-1 Shinmachi, Hirakata-Shi, Osaka, Japan.

Hideki Takegawa (H)

Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-Shi, Osaka, Japan. takegawh@hirakata.kmu.ac.jp.
Department of Radiology, Kansai Medical University Graduate School of Medicine, 2-5-1 Shinmachi, Hirakata-Shi, Osaka, Japan. takegawh@hirakata.kmu.ac.jp.
Department of Radiation Oncology, Kansai Medical University Hospital, 2-5-1 Shinmachi, Hirakata-Shi, Osaka, Japan. takegawh@hirakata.kmu.ac.jp.

Midori Yui (M)

Department of Radiology, Kansai Medical University Graduate School of Medicine, 2-5-1 Shinmachi, Hirakata-Shi, Osaka, Japan.
Department of Radiation Oncology, Kansai Medical University Hospital, 2-5-1 Shinmachi, Hirakata-Shi, Osaka, Japan.

Yusuke Anetai (Y)

Department of Radiology, Kansai Medical University Graduate School of Medicine, 2-5-1 Shinmachi, Hirakata-Shi, Osaka, Japan.
Department of Radiation Oncology, Kansai Medical University Hospital, 2-5-1 Shinmachi, Hirakata-Shi, Osaka, Japan.

Yuhei Koike (Y)

Department of Radiology, Kansai Medical University Graduate School of Medicine, 2-5-1 Shinmachi, Hirakata-Shi, Osaka, Japan.
Department of Radiation Oncology, Kansai Medical University Hospital, 2-5-1 Shinmachi, Hirakata-Shi, Osaka, Japan.

Satoaki Nakamura (S)

Department of Radiology, Kansai Medical University Graduate School of Medicine, 2-5-1 Shinmachi, Hirakata-Shi, Osaka, Japan.
Department of Radiation Oncology, Kansai Medical University Hospital, 2-5-1 Shinmachi, Hirakata-Shi, Osaka, Japan.

Noboru Tanigawa (N)

Department of Radiology, Kansai Medical University Graduate School of Medicine, 2-5-1 Shinmachi, Hirakata-Shi, Osaka, Japan.

Masahiko Koziumi (M)

Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-Shi, Osaka, Japan.

Teiji Nishio (T)

Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-Shi, Osaka, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH