Deletion of PDK
Mef2c
Nkx2.5
PDK1
PI3K/ERK
Pulmonic stenosis (PS)
SHP2
Journal
Journal of cardiovascular translational research
ISSN: 1937-5395
Titre abrégé: J Cardiovasc Transl Res
Pays: United States
ID NLM: 101468585
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
17
02
2023
accepted:
14
03
2023
medline:
2
11
2023
pubmed:
30
3
2023
entrez:
29
3
2023
Statut:
ppublish
Résumé
Phosphoinositide-dependent protein kinase-1 (PDK
Identifiants
pubmed: 36988860
doi: 10.1007/s12265-023-10380-y
pii: 10.1007/s12265-023-10380-y
doi:
Substances chimiques
Glycogen Synthase Kinase 3
EC 2.7.11.26
Proto-Oncogene Proteins c-akt
EC 2.7.11.1
Pdpk1 protein, mouse
EC 2.7.11.1
3-Phosphoinositide-Dependent Protein Kinases
EC 2.7.11.1
Protein Tyrosine Phosphatase, Non-Receptor Type 11
EC 3.1.3.48
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1220-1231Subventions
Organisme : National Natural Science Foundation of China
ID : 31930029
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Vincent SD, Buckingham ME. How to make a heart: the origin and regulation of cardiac progenitor cells. Curr Top Dev Biol. 2010;90:1–41.
doi: 10.1016/S0070-2153(10)90001-X
pubmed: 20691846
Dyer LA, Kirby ML. The role of secondary heart field in cardiac development. Dev Biol. 2009;336:137–44.
doi: 10.1016/j.ydbio.2009.10.009
pubmed: 19835857
pmcid: 2794420
Bruneau BG. The developmental genetics of congenital heart disease. Nature. 2008;451:943–8.
doi: 10.1038/nature06801
pubmed: 18288184
Kelly RG, Brown NA, Buckingham ME. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev. 2001;1:435–40.
Plein A, Calmont A, Fantin A, Denti L, Anderson NA, Scambler PJ, Ruhrberg C. Neural crest–derived SEMA3C activates endothelial NRP1 for cardiac outflow tract septation. J Clin Investig. 2015;125(7):2661–76.
doi: 10.1172/JCI79668
pubmed: 26053665
pmcid: 4563681
Harmon AW, Nakano A. Nkx2-5 Lineage tracing visualizes the distribution of second heart field-derived aortic smooth muscle. Genesis. 2013;51:862–9.
doi: 10.1002/dvg.22721
pubmed: 24133047
pmcid: 3943338
Sawada H, Rateri DL, Jessica JM, Mark WM, Alan D. Smooth muscle cells derived from second heart field and cardiac neural crest reside in spatially distinct domains in the media of the ascending aorta-brief report. Arterioscler Thromb Vasc Biol. 2017;37(9):1722–6.
doi: 10.1161/ATVBAHA.117.309599
pubmed: 28663257
pmcid: 5570666
Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harbison D, Ashworth A, Bownes M. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol. 1997;7(10):776–89.
doi: 10.1016/S0960-9822(06)00336-8
pubmed: 9368760
Yang KJ, Shin SH, Piao LZ, Shin E, Li YW, Park KA, Byun HS, Won M, Hong JH, Kweon GR, Hur GM, Seok JH, Chun T, Brazil DP, Hemmings BA, Park J. Regulation of 3-phosphoinositide-dependent protein kinase-1 (PDK
doi: 10.1074/jbc.M706361200
pubmed: 18024423
Lauriol J, Jaffre F, Kontaridis MI. The role of the protein tyrosine phosphatase SHP2 in cardiac development and disease. Semin Cell Dev Biol. 2015;37:73–81.
doi: 10.1016/j.semcdb.2014.09.013
pubmed: 25256404
Hof P, Pluskey S, Dhe-Pagganon S, Eck MJ, Shoelson SE. Crystal structure of the tyrosinen phosphatase SHP-2. Cell. 1998;92:441–50.
doi: 10.1016/S0092-8674(00)80938-1
pubmed: 9491886
Neel BG, Gu H, Pao L. The ‘Shp’ ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci. 2003;28:284–93.
doi: 10.1016/S0968-0004(03)00091-4
pubmed: 12826400
Araki T, Gordon C, Susan N, Lily M, Roderick TB, Neel BG. Noonan syndrome cardiac defects are caused by PTPN11 acting in endocardium to enhance endocardial-mesenchymal transformation PNAS. Proc Natl Acad Sci. 2009;106(12):4736–41.
doi: 10.1073/pnas.0810053106
pubmed: 19251646
pmcid: 2649209
Moses K, DeMayo F, Braun RM, Reecy JL, Schwartz RJ. Embryonic expression of an Nkx2-5/cre gene using ROSA26 reporter mice. Genesis. 2001;31:176–80.
doi: 10.1002/gene.10022
pubmed: 11783008
Verzi MP, McCulley DJ, Sarah DV, Evdokia D, Brian LB. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev Biol. 2005;287:134–45.
doi: 10.1016/j.ydbio.2005.08.041
pubmed: 16188249
Hou N, Wang J, Li WL, Zhang JS, Yang X. Genotyping analysis of carmyocyte and chondrocyte specific Cre recombinase transgenic mice. Lett Biotechnol. 2005;16(3):262–4.
Yuan B, Wan P, Chu D, Nie J, Cao Y, Luo W. cardiomyocyte-specific Wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice. Am J Pathol. 2014;184(20):1967–80.
doi: 10.1016/j.ajpath.2014.04.007
pubmed: 24840128
Lawlor MA, Mora A, Ashby P, William M, Murray-Taits V, Malone L, Prescott A, Lucocq J, Alessi DR. Essential role of PDK
doi: 10.1093/emboj/cdf387
pubmed: 12110585
pmcid: 126129
Zhu XX, Shi DY, Li XQ, Gong WJ, Wu FJ, Guo XJ, Xiao H, Liu LX, Zhou H. TLR signalling affects sperm mitochondrial function and motility via phosphatidylinositol 3-kinase and glycogen synthase kinase-3α. Cell Signal. 2016;28(3):148–56.
doi: 10.1016/j.cellsig.2015.12.002
pubmed: 26658093
Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP. Myogenic and morphogenetic defects in the heart tubes of murine lacking the homeo box gene Nkx2-5. Genes Dev. 1995;9(13):1654–66.
doi: 10.1101/gad.9.13.1654
pubmed: 7628699
Zhang L, Aya NK, Nishat S, Cai WB, Cai XQ, Anne MM. Mesodermal Nkx2.5 is necessary and sufficient for early second heart field development. Dev Biol. 2014;390(1):68–79.
doi: 10.1016/j.ydbio.2014.02.023
pubmed: 24613616
pmcid: 4461860
Jin HW, Wang HJ, Li J, Yu S, Xu MJ, Qiu ZQ, Xia M, Zhu J, Feng QT, Xie J, Xu B, Yang ZZ. Differential contribution of the two waves of cardiac progenitors and their derivatives to aorta and pulmonary artery. Dev Biol. 2019;450(7):82–9.
doi: 10.1016/j.ydbio.2019.03.019
pubmed: 30951706
Hu J, Shi Y, Xia M, Liu Z, Zhang R, Luo H, Zhang R, Yang ZZ, Yuan B. WDR
doi: 10.1016/j.ydbio.2018.04.004
pubmed: 29654745
Stefan CM, Tanvi S, Ralston MB, Kelly LB, Brian LB. Cardiovascular development and survival require Mef2c function in the myocardial but not the endothelial lineage. Dev Biol. 2017;445(2):170–7.
Mora A, Davies AM, Bertrand L, Sharif I, Budas GR, Jovanovic S, Mouton VÂ, Kahn CR, Lucocq JM, Gray GA, Jovanovic A, Alessi DR. Deficiency of PDK
Feng QT, Di RM, Tao F, Chang Z, Lu SS, Fan WJ, Shan CJ, Li XL, Yang ZZ. PDK
doi: 10.1128/MCB.00420-10
pubmed: 20457809
pmcid: 2897563
Chang Z, Zhang Q, Feng QT, Xu J, Teng T, Luan Q, Shan C. HuY, Hemmings BA, Gao X, Yang Z, Deletion of Akt
doi: 10.1016/j.ydbio.2010.08.033
pubmed: 20816796
Krenz M, Gulick J, Osinska HE, Colbert MC, Molkentin JD, Robbins J. Role of ERK1/2 signaling in congenital valve malformations in Noonan syndrome. PNAS. 2008;105(48):18930–5.
doi: 10.1073/pnas.0806556105
pubmed: 19017799
pmcid: 2596231
Araki T, Mohi MG, Ismat FA, Bronson R, Williams I, Kutok J, Yang WT, Pao I L, Gilliland DG, Epstein J, Neel B. Mouse model of Noonan syndrome reveals cell type– and gene dosage–dependent effects of Ptpn11 mutation. Nat Med. 2004;10(8):849–57.
doi: 10.1038/nm1084
pubmed: 15273746
Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J, Mueller M, Fumagalli S, Kozma SC, Thomas G. S6K
doi: 10.1128/MCB.24.8.3112-3124.2004
Julie RM, Tetsuo S, Zhang L, Oleg T, Megan CS, Adam L. Deletion of ribosomal S6 kinases does not attenuate pathological, physiological, or insulin-like growth factor 1 receptor-phosphoinositide 3-kinase-induced cardiac hypertrophy. Mol Cell Biol. 2004;24(14):6231–40.
doi: 10.1128/MCB.24.14.6231-6240.2004
Luo W, Zhao X, Jin H, Tao L, Zhu J, Wang H, Hemmings BA, Yang Z. Akt1 signaling coordinates BMP signaling and beta-catenin activity to regulate second heart field progenitor development. Dev. 2015;142:732–42.
doi: 10.1242/dev.119016
Zhao X, Lu SS, Nie JW, Hu XS, Luo W, Wu XQ, Liu HL, Feng QT, Chang Z, Liu Y, Cao YS, Sun HX, Li XL, Hu YL, Yang ZZ. Phosphoinositide-dependent kinase-1 and mTORC2 synergistically maintain postnatal heart growth and heart function in mice. Mol Cell Biol. 2014;34(11):1966–75.
doi: 10.1128/MCB.00144-14
pubmed: 24662050
pmcid: 4019065
Edouard T, Combier JP. Functional Effects of PTPN11 (SHP2) Mutations causing LEOPARD syndrome on epidermal growth factor induced phosphoinositide 3-kinase/AKT/glycogen synthase kinase 3 signaling. Mol Cell Biol. 2010;30(10):2498–507.
doi: 10.1128/MCB.00646-09
pubmed: 20308328
pmcid: 2863708
Zhang SQ, Tsiaras WG, Araki T, Wen GY, Neel BG. Receptor-specific regulation of phosphatidylinositol 3-kinase activation by the protein tyrosine phosphatase SHP2. Mol Cell Biol. 2002;22(12):4062–72.
doi: 10.1128/MCB.22.12.4062-4072.2002
pubmed: 12024020
pmcid: 133866
Maroun CR, Naujokas MA, Holgado-Madruga M, Wong AJ, Park M. The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the Met receptor tyrosine kinase. Mol Cell Biol. 2000;20:8513–25.
doi: 10.1128/MCB.20.22.8513-8525.2000
pubmed: 11046147
pmcid: 102157