PI(4,5)P

Cellular signaling Cholesterol Lipid homeostasis Lipid modulation of protein function Lipid regulation Phosphatidylinositol 4,5-bisphosphate

Journal

Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103

Informations de publication

Date de publication:
2023
Historique:
medline: 31 3 2023
entrez: 29 3 2023
pubmed: 30 3 2023
Statut: ppublish

Résumé

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P

Identifiants

pubmed: 36988876
doi: 10.1007/978-3-031-21547-6_1
doi:

Substances chimiques

Phosphatidylinositol 4,5-Diphosphate 0
Phosphatidylinositols 0
Proteins 0
Cholesterol 97C5T2UQ7J

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3-59

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Nature Switzerland AG.

Références

Downes CP, Gray A, Lucocq JM. Probing phosphoinositide functions in signaling and membrane trafficking. Trends Cell Biol. 2005;15(5):259–68.
pubmed: 15866030 doi: 10.1016/j.tcb.2005.03.008
Picas L, Viaud J, Schauer K, et al. BIN1/M-Amphiphysin2 induces clustering of phosphoinositides to recruit its downstream partner dynamin. Nat Commun. 2014;5:5647.
pubmed: 25487648 doi: 10.1038/ncomms6647
McLean MA, Stephen AG, Sligar SG. PIP2 influences the conformational dynamics of membrane-bound KRAS4b. Biochemistry. 2019;58(33):3537–45.
pubmed: 31339036 doi: 10.1021/acs.biochem.9b00395
Romarowski A, Battistone MA, La Spina FA, et al. PKA-dependent phosphorylation of LIMK1 and Cofilin is essential for mouse sperm acrosomal exocytosis. Dev Biol. 2015;405(2):237–49.
pubmed: 26169470 pmcid: 4546557 doi: 10.1016/j.ydbio.2015.07.008
Liepiņa I, Czaplewski C, Janmey P, Liwo A. Molecular dynamics study of a gelsolin-derived peptide binding to a lipid bilayer containing phosphatidylinositol 4,5-bisphosphate. Biopolymers. 2003;71(1):49–70.
pubmed: 12712500 doi: 10.1002/bip.10375
Amano T, Tanabe K, Eto T, Narumiya S, Mizuno K. LIM-kinase 2 induces formation of stress fibres, focal adhesions and membrane blebs, dependent on its activation by Rho-associated kinase-catalysed phosphorylation at threonine-505. Biochem J. 2001;354(Pt 1):149–59.
pubmed: 11171090 pmcid: 1221639 doi: 10.1042/bj3540149
Walter LM, Franz P, Lindner R, Tsiavaliaris G, Hensel N, Claus P. Profilin2a-phosphorylation as a regulatory mechanism for actin dynamics. FASEB J. 2020;34(2):2147–60.
pubmed: 31908005 doi: 10.1096/fj.201901883R
Saltel F, Mortier E, Hytönen VP, et al. New PI(4,5)P2- and membrane proximal integrin-binding motifs in the talin head control beta3-integrin clustering. J Cell Biol. 2009;187(5):715–31.
pubmed: 19948488 pmcid: 2806581 doi: 10.1083/jcb.200908134
Logothetis DE, Petrou VI, Zhang M, et al. Phosphoinositide control of membrane protein function: a frontier led by studies on ion channels. Annu Rev Physiol. 2015;77:81–104.
pubmed: 25293526 doi: 10.1146/annurev-physiol-021113-170358
Levental I, Christian DA, Wang YH, Madara JJ, Discher DE, Janmey PA. Calcium-dependent lateral organization in phosphatidylinositol 4,5-bisphosphate (PIP2)- and cholesterol-containing monolayers. Biochemistry. 2009;48(34):8241–8.
pubmed: 19630438 doi: 10.1021/bi9007879
Wang YH, Collins A, Guo L, et al. Divalent cation-induced cluster formation by polyphosphoinositides in model membranes. J Am Chem Soc. 2012;134(7):3387–95.
pubmed: 22280226 pmcid: 3445022 doi: 10.1021/ja208640t
Viaud J, Mansour R, Antkowiak A, et al. Phosphoinositides: important lipids in the coordination of cell dynamics. Biochimie. 2016;125:250–8.
pubmed: 26391221 doi: 10.1016/j.biochi.2015.09.005
Picas L, Gaits-Iacovoni F, Goud B. The emerging role of phosphoinositide clustering in intracellular trafficking and signal transduction. F1000Res. 2016;5:F1000. Faculty Rev-422
pubmed: 27092250 pmcid: 4821294 doi: 10.12688/f1000research.7537.1
Rameh LE, Tolias KF, Duckworth BC, Cantley LC. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature. 1997;390(6656):192–6.
pubmed: 9367159 doi: 10.1038/36621
Liu C, Deb S, Ferreira VS, Xu E, Baumgart T. Kinetics of PTEN-mediated PI(3,4,5)P3 hydrolysis on solid supported membranes. PLoS One. 2018;13(2):e0192667.
pubmed: 29447222 pmcid: 5813967 doi: 10.1371/journal.pone.0192667
Wang J, Richards DA. Segregation of PIP2 and PIP3 into distinct nanoscale regions within the plasma membrane. Biol Open. 2012;1(9):857–62.
pubmed: 23213479 pmcid: 3507238 doi: 10.1242/bio.20122071
De Matteis MA, Godi A. PI-loting membrane traffic. Nat Cell Biol. 2004;6(6):487–92.
pubmed: 15170460 doi: 10.1038/ncb0604-487
De Craene JO, Bertazzi DL, Bär S, Friant S. Phosphoinositides, major actors in membrane trafficking and lipid signaling pathways. Int J Mol Sci. 2017;18(3):634.
pubmed: 28294977 pmcid: 5372647 doi: 10.3390/ijms18030634
Simonsen A, Wurmser AE, Emr SD, Stenmark H. The role of phosphoinositides in membrane transport. Curr Opin Cell Biol. 2001;13(4):485–92.
pubmed: 11454456 doi: 10.1016/S0955-0674(00)00240-4
Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 2006;443(7112):651–7.
pubmed: 17035995 doi: 10.1038/nature05185
Ho CY, Alghamdi TA, Botelho RJ. Phosphatidylinositol-3,5-bisphosphate: no longer the poor PIP2. Traffic. 2012;13(1):1–8.
pubmed: 21736686 doi: 10.1111/j.1600-0854.2011.01246.x
Mandal K. Review of PIP2 in cellular signaling, functions and diseases. Int J Mol Sci. 2020;21(21):8342.
pubmed: 33172190 pmcid: 7664428 doi: 10.3390/ijms21218342
Hammond GRV, Burke JE. Novel roles of phosphoinositides in signaling, lipid transport, and disease. Curr Opin Cell Biol. 2020;63:57–67.
pubmed: 31972475 pmcid: 7247936 doi: 10.1016/j.ceb.2019.12.007
Jost M, Simpson F, Kavran JM, Lemmon MA, Schmid SL. Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Curr Biol. 1998;8(25):1399–402.
pubmed: 9889104 doi: 10.1016/S0960-9822(98)00022-0
Czech MP. PIP2 and PIP3: complex roles at the cell surface. Cell. 2000;100(6):603–6.
pubmed: 10761925 doi: 10.1016/S0092-8674(00)80696-0
Cremona O, De Camilli P. Phosphoinositides in membrane traffic at the synapse. J Cell Sci. 2001;114(Pt 6):1041–52.
pubmed: 11228149 doi: 10.1242/jcs.114.6.1041
Murthy VN, De Camilli P. Cell biology of the presynaptic terminal. Annu Rev Neurosci. 2003;26:701–28.
pubmed: 14527272 doi: 10.1146/annurev.neuro.26.041002.131445
Guet D, Mandal K, Pinot M, et al. Mechanical role of actin dynamics in the rheology of the Golgi complex and in Golgi-associated trafficking events. Curr Biol. 2014;24(15):1700–11.
pubmed: 25042587 doi: 10.1016/j.cub.2014.06.048
Takei K, Yoshida Y, Yamada H. Regulatory mechanisms of dynamin-dependent endocytosis. J Biochem. 2005;137(3):243–7.
pubmed: 15809324 doi: 10.1093/jb/mvi052
Clayton EL, Cousin MA. The molecular physiology of activity-dependent bulk endocytosis of synaptic vesicles. J Neurochem. 2009;111(4):901–14.
pubmed: 19765184 pmcid: 2871311 doi: 10.1111/j.1471-4159.2009.06384.x
Koch M, Holt M. Coupling exo- and endocytosis: an essential role for PIP
pubmed: 22387937 doi: 10.1016/j.bbalip.2012.02.008
Wenk MR, De Camilli P. Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc Natl Acad Sci U S A. 2004;101(22):8262–9.
pubmed: 15146067 pmcid: 420382 doi: 10.1073/pnas.0401874101
Bai J, Tucker WC, Chapman ER. PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. Nat Struct Mol Biol. 2004;11(1):36–44.
pubmed: 14718921 doi: 10.1038/nsmb709
Krauss M, Kukhtina V, Pechstein A, Haucke V. Stimulation of phosphatidylinositol kinase type I-mediated phosphatidylinositol (4,5)-bisphosphate synthesis by AP-2mu-cargo complexes. Proc Natl Acad Sci U S A. 2006;103(32):11934–9.
pubmed: 16880396 pmcid: 1567676 doi: 10.1073/pnas.0510306103
Posor Y, Eichhorn-Gruenig M, Puchkov D, et al. Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature. 2013;499(7457):233–7.
pubmed: 23823722 doi: 10.1038/nature12360
Mandal K, Wang I, Vitiello E, Orellana LA, Balland M. Cell dipole behaviour revealed by ECM sub-cellular geometry. Nat Commun. 2014;5:5749.
pubmed: 25494455 doi: 10.1038/ncomms6749
Mandal K, Balland M, Bureau L. Thermoresponsive micropatterned substrates for single cell studies. PLoS One. 2012;7(5):e37548.
pubmed: 22701519 pmcid: 3365108 doi: 10.1371/journal.pone.0037548
Mizuno D, Tardin C, Schmidt CF, Mackintosh FC. Nonequilibrium mechanics of active cytoskeletal networks. Science. 2007;315(5810):370–3.
pubmed: 17234946 doi: 10.1126/science.1134404
Cingolani LA, Goda Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy [published correction appears in Nat Rev Neurosci. 2008 Jun;9(6):494]. Nat Rev Neurosci. 2008;9(5):344–56.
pubmed: 18425089 doi: 10.1038/nrn2373
Hotulainen P, Hoogenraad CC. Actin in dendritic spines: connecting dynamics to function. J Cell Biol. 2010;189(4):619–29.
pubmed: 20457765 pmcid: 2872912 doi: 10.1083/jcb.201003008
Yin HL, Janmey PA. Phosphoinositide regulation of the actin cytoskeleton. Annu Rev Physiol. 2003;65:761–89.
pubmed: 12471164 doi: 10.1146/annurev.physiol.65.092101.142517
Yamamoto M, Hilgemann DH, Feng S, et al. Phosphatidylinositol 4,5-bisphosphate induces actin stress-fiber formation and inhibits membrane ruffling in CV1 cells. J Cell Biol. 2001;152(5):867–76.
pubmed: 11238445 pmcid: 2198810 doi: 10.1083/jcb.152.5.867
van Rheenen J, Song X, van Roosmalen W, et al. EGF-induced PIP2 hydrolysis releases and activates cofilin locally in carcinoma cells. J Cell Biol. 2007;179(6):1247–59.
pubmed: 18086920 pmcid: 2140025 doi: 10.1083/jcb.200706206
McNamee HP, Liley HG, Ingber DE. Integrin-dependent control of inositol lipid synthesis in vascular endothelial cells and smooth muscle cells. Exp Cell Res. 1996;224(1):116–22.
pubmed: 8612675 doi: 10.1006/excr.1996.0118
Borowsky ML, Hynes RO. Layilin, a novel talin-binding transmembrane protein homologous with C-type lectins, is localized in membrane ruffles. J Cell Biol. 1998;143(2):429–42.
pubmed: 9786953 pmcid: 2132847 doi: 10.1083/jcb.143.2.429
Sorre B, Callan-Jones A, Manneville JB, et al. Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. Proc Natl Acad Sci U S A. 2009;106(14):5622–6.
pubmed: 19304798 pmcid: 2667082 doi: 10.1073/pnas.0811243106
Roux A, Koster G, Lenz M, et al. Membrane curvature controls dynamin polymerization. Proc Natl Acad Sci U S A. 2010;107(9):4141–6.
pubmed: 20160074 pmcid: 2840091 doi: 10.1073/pnas.0913734107
Wu T, Baumgart T. BIN1 membrane curvature sensing and generation show autoinhibition regulated by downstream ligands and PI(4,5)P2. Biochemistry. 2014;53(46):7297–309.
pubmed: 25350771 doi: 10.1021/bi501082r
Nicot AS, Toussaint A, Tosch V, et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet. 2007;39(9):1134–9.
pubmed: 17676042 doi: 10.1038/ng2086
Weis WI, Kobilka BK. The molecular basis of g protein-coupled receptor activation. Annu Rev Biochem. 2018;87:897–919.
pubmed: 29925258 pmcid: 6535337 doi: 10.1146/annurev-biochem-060614-033910
Ferré S, Ciruela F, Dessauer CW, et al. G protein-coupled receptor-effector macromolecular membrane assemblies (GEMMAs). Pharmacol Ther. 2022;231:107977.
pubmed: 34480967 doi: 10.1016/j.pharmthera.2021.107977
Dawaliby R, Trubbia C, Delporte C, et al. Allosteric regulation of G protein-coupled receptor activity by phospholipids. Nat Chem Biol. 2016;12(1):35–9.
pubmed: 26571351 doi: 10.1038/nchembio.1960
Gupta K, Donlan JAC, Hopper JTS, et al. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature. 2017;541(7637):421–4.
pubmed: 28077870 pmcid: 5501331 doi: 10.1038/nature20820
Yen HY, Hoi KK, Liko I, et al. PtdIns(4,5)P
pubmed: 29995853 pmcid: 6059376 doi: 10.1038/s41586-018-0325-6
Eichel K, Jullié D, Barsi-Rhyne B, et al. Catalytic activation of β-arrestin by GPCRs. Nature. 2018;557(7705):381–6.
pubmed: 29720660 pmcid: 6058965 doi: 10.1038/s41586-018-0079-1
Komolov KE, Du Y, Duc NM, et al. Structural and functional analysis of a β
pubmed: 28431242 pmcid: 5526774 doi: 10.1016/j.cell.2017.03.047
Gaidarov I, Krupnick JG, Falck JR, Benovic JL, Keen JH. Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding. EMBO J. 1999;18(4):871–81.
pubmed: 10022830 pmcid: 1171180 doi: 10.1093/emboj/18.4.871
Ebi H, Costa C, Faber AC, et al. PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1. Proc Natl Acad Sci U S A. 2013;110(52):21124–9.
pubmed: 24327733 pmcid: 3876254 doi: 10.1073/pnas.1314124110
Cao S, Chung S, Kim S, Li Z, Manor D, Buck M. K-Ras G-domain binding with signaling lipid phosphatidylinositol (4,5)-phosphate (PIP2): membrane association, protein orientation, and function. J Biol Chem. 2019;294(17):7068–84.
pubmed: 30792310 pmcid: 6497929 doi: 10.1074/jbc.RA118.004021
Hille B. Ionic channels of excitable membranes. Sunderland: Sinauer Associates Inc.; 2002.
Gada KD, Mahajan R, Logothetis DE. Mechanism of G protein regulation of K
Gada KD, Logothetis DE. PKC regulation of ion channels: the involvement of PIP
pubmed: 35588786 pmcid: 9198471 doi: 10.1016/j.jbc.2022.102035
Kubo Y, Reuveny E, Slesinger PA, Jan YN, Jan LY. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature. 1993;364(6440):802–6.
pubmed: 8355805 doi: 10.1038/364802a0
Dascal N, Lim NF, Schreibmayer W, Wang W, Davidson N, Lester HA. Expression of an atrial G-protein-activated potassium channel in Xenopus oocytes. Proc Natl Acad Sci U S A. 1993;90(14):6596–600.
pubmed: 8341673 pmcid: 46979 doi: 10.1073/pnas.90.14.6596
Lesage F, Duprat F, Fink M, et al. Cloning provides evidence for a family of inward rectifier and G-protein coupled K+ channels in the brain. FEBS Lett. 1994;353(1):37–42.
pubmed: 7926018 doi: 10.1016/0014-5793(94)01007-2
Krapivinsky G, Gordon EA, Wickman K, Velimirović B, Krapivinsky L, Clapham DE. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins. Nature. 1995;374(6518):135–41.
pubmed: 7877685 doi: 10.1038/374135a0
Cui M, Cantwell L, Zorn A, Logothetis DE. Kir channel molecular physiology, pharmacology, and therapeutic implications. Handb Exp Pharmacol. 2021;267:277–356.
pubmed: 34345939 doi: 10.1007/164_2021_501
Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE. The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature. 1987;325(6102):321–6.
pubmed: 2433589 doi: 10.1038/325321a0
Sui JL, Chan KW, Logothetis DE. Na+ activation of the muscarinic K+ channel by a G-protein-independent mechanism. J Gen Physiol. 1996;108(5):381–91.
pubmed: 8923264 doi: 10.1085/jgp.108.5.381
Sui JL, Petit-Jacques J, Logothetis DE. Activation of the atrial KACh channel by the betagamma subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates. Proc Natl Acad Sci U S A. 1998;95(3):1307–12.
pubmed: 9448327 pmcid: 18753 doi: 10.1073/pnas.95.3.1307
Huang CL, Feng S, Hilgemann DW. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature. 1998;391(6669):803–6.
pubmed: 9486652 doi: 10.1038/35882
Ho IH, Murrell-Lagnado RD. Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. J Biol Chem. 1999;274(13):8639–48.
pubmed: 10085101 doi: 10.1074/jbc.274.13.8639
Ho IH, Murrell-Lagnado RD. Molecular mechanism for sodium-dependent activation of G protein-gated K+ channels. J Physiol. 1999;520(Pt 3):645–51.
pubmed: 10545132 pmcid: 2269610 doi: 10.1111/j.1469-7793.1999.00645.x
Rosenhouse-Dantsker A, Sui JL, Zhao Q, et al. A sodium-mediated structural switch that controls the sensitivity of Kir channels to PtdIns(4,5)P(2). Nat Chem Biol. 2008;4(10):624–31.
pubmed: 18794864 pmcid: 4100997 doi: 10.1038/nchembio.112
Petit-Jacques J, Sui JL, Logothetis DE. Synergistic activation of G protein-gated inwardly rectifying potassium channels by the betagamma subunits of G proteins and Na(+) and Mg(2+) ions. J Gen Physiol. 1999;114(5):673–84.
pubmed: 10532964 pmcid: 2230539 doi: 10.1085/jgp.114.5.673
Whorton MR, MacKinnon R. Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell. 2011;147(1):199–208.
pubmed: 21962516 pmcid: 3243363 doi: 10.1016/j.cell.2011.07.046
Whorton MR, MacKinnon R. X-ray structure of the mammalian GIRK2-βγ G-protein complex. Nature. 2013;498(7453):190–7.
pubmed: 23739333 pmcid: 4654628 doi: 10.1038/nature12241
Mahajan R, Ha J, Zhang M, Kawano T, Kozasa T, Logothetis DE. A computational model predicts that Gβγ acts at a cleft between channel subunits to activate GIRK1 channels. Sci Signal. 2013;6(288):ra69.
pubmed: 23943609 pmcid: 4100999 doi: 10.1126/scisignal.2004075
Zhang H, He C, Yan X, Mirshahi T, Logothetis DE. Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nat Cell Biol. 1999;1(3):183–8.
pubmed: 10559906 doi: 10.1038/11103
Li D, Jin T, Gazgalis D, Cui M, Logothetis DE. On the mechanism of GIRK2 channel gating by phosphatidylinositol bisphosphate, sodium, and the Gβγ dimer. J Biol Chem. 2019;294(49):18934–48.
pubmed: 31659119 pmcid: 6901319 doi: 10.1074/jbc.RA119.010047
Gazgalis D, Cantwell L, Xu Y, Thakur GA, Cui M, Guarnieri F, Logothetis DE. Use of a molecular switch probe to activate or inhibit GIRK1 heteromers in silico reveals a novel gating mechanism. Int J Mol Sci. 2022;23(18):10820.
pubmed: 36142730 pmcid: 9502415 doi: 10.3390/ijms231810820
Kaufmann K, Romaine I, Days E, et al. ML297 (VU0456810), the first potent and selective activator of the GIRK potassium channel, displays antiepileptic properties in mice. ACS Chem Neurosci. 2013;4(9):1278–86.
pubmed: 23730969 pmcid: 3778424 doi: 10.1021/cn400062a
Wen W, Wu W, Weaver CD, Lindsley CW. Discovery of potent and selective GIRK1/2 modulators via ‘molecular switches’ within a series of 1-(3-cyclopropyl-1-phenyl-1H-pyrazol-5-yl)ureas. Bioorg Med Chem Lett. 2014;24(21):5102–6.
pubmed: 25264075 doi: 10.1016/j.bmcl.2014.08.061
Berridge MJ, Irvine RF. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984;312(5992):315–21.
pubmed: 6095092 doi: 10.1038/312315a0
Kirk CJ, Bone EA, Palmer S, Michell RH. The role of phosphatidylinositol 4,5 bisphosphate breakdown in cell-surface receptor activation. J Recept Res. 1984;4(1-6):489–504.
pubmed: 6098668 doi: 10.3109/10799898409042569
Smrcka AV, Hepler JR, Brown KO, Sternweis PC. Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science. 1991;251(4995):804–7.
pubmed: 1846707 doi: 10.1126/science.1846707
Bill CA, Vines CM, Phospholipase C. Adv Exp Med Biol. 2020;1131:215–42.
pubmed: 31646512 pmcid: 7790445 doi: 10.1007/978-3-030-12457-1_9
Rohács T, Lopes C, Mirshahi T, Jin T, Zhang H, Logothetis DE. Assaying phosphatidylinositol bisphosphate regulation of potassium channels. Methods Enzymol. 2002;345:71–92.
pubmed: 11665643 doi: 10.1016/S0076-6879(02)45008-2
Várnai P, Gulyás G, Tóth DJ, Sohn M, Sengupta N, Balla T. Quantifying lipid changes in various membrane compartments using lipid binding protein domains. Cell Calcium. 2017;64:72–82.
pubmed: 28088320 doi: 10.1016/j.ceca.2016.12.008
Idevall-Hagren O, Dickson EJ, Hille B, Toomre DK, De Camilli P. Optogenetic control of phosphoinositide metabolism. Proc Natl Acad Sci U S A. 2012;109(35):E2316–23.
pubmed: 22847441 pmcid: 3435206 doi: 10.1073/pnas.1211305109
Xu Y, Cantwell L, Molosh AI, et al. The small molecule GAT1508 activates brain-specific GIRK1/2 channel heteromers and facilitates conditioned fear extinction in rodents. J Biol Chem. 2020;295(11):3614–34.
pubmed: 31953327 pmcid: 7076198 doi: 10.1074/jbc.RA119.011527
Cui M, Xu K, Gada KD, et al. A novel small-molecule selective activator of homomeric GIRK4 channels. J Biol Chem. 2022;298(6):102009.
pubmed: 35525275 pmcid: 9194863 doi: 10.1016/j.jbc.2022.102009
Narayan K, Lemmon MA. Determining selectivity of phosphoinositide-binding domains. Methods. 2006;39(2):122–33.
pubmed: 16829131 pmcid: 3786563 doi: 10.1016/j.ymeth.2006.05.006
Deng W, Mahajan R, Baumgarten CM, Logothetis DE. The ICl,swell inhibitor DCPIB blocks Kir channels that possess weak affinity for PIP2. Pflugers Arch. 2016;468(5):817–24.
pubmed: 26837888 pmcid: 5317042 doi: 10.1007/s00424-016-1794-9
Yeagle PL. Cholesterol and the cell membrane. Biochim Biophys Acta. 1985;822(3-4):267–87.
pubmed: 3904832 doi: 10.1016/0304-4157(85)90011-5
Yeagle PL. Modulation of membrane function by cholesterol. Biochimie. 1991;73(10):1303–10.
pubmed: 1664240 doi: 10.1016/0300-9084(91)90093-G
Rosenhouse-Dantsker A, Mehta D, Levitan I. Regulation of ion channels by membrane lipids. Compr Physiol. 2012;2(1):31–68.
pubmed: 23728970 doi: 10.1002/cphy.c110001
Maxfield FR, van Meer G. Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol. 2010;22(4):422–9.
pubmed: 20627678 pmcid: 2910236 doi: 10.1016/j.ceb.2010.05.004
Goluszko P, Nowicki B. Membrane cholesterol: a crucial molecule affecting interactions of microbial pathogens with mammalian cells. Infect Immun. 2005;73(12):7791–6.
pubmed: 16299268 pmcid: 1307024 doi: 10.1128/IAI.73.12.7791-7796.2005
Ramprasad OG, Srinivas G, Rao KS, et al. Changes in cholesterol levels in the plasma membrane modulate cell signaling and regulate cell adhesion and migration on fibronectin. Cell Motil Cytoskelet. 2007;64(3):199–216.
doi: 10.1002/cm.20176
Gimpl G, Burger K, Fahrenholz F. Cholesterol as modulator of receptor function. Biochemistry. 1997;36(36):10959–74.
pubmed: 9283088 doi: 10.1021/bi963138w
Rosenhouse-Dantsker A, Bukiya AN. Direct mechanisms in cholesterol modulation of protein function, Advances in experimental medicine and biology, 1135. Cham: Springer; 2019.
doi: 10.1007/978-3-030-04278-3
Rosenhouse-Dantsker A, Bukiya AN. Cholesterol modulation of protein function: sterol specificity and indirect mechanisms, Advances in experimental medicine and biology, 1115. Cham: Springer; 2019.
doi: 10.1007/978-3-030-04278-3
Herman GE, Kratz L. Disorders of sterol synthesis: beyond Smith-Lemli-Opitz syndrome. Am J Med Genet C Semin Med Genet. 2012;160C(4):301–21.
pubmed: 23042573 doi: 10.1002/ajmg.c.31340
Kellner-Weibel G, Geng YJ, Rothblat GH. Cytotoxic cholesterol is generated by the hydrolysis of cytoplasmic cholesteryl ester and transported to the plasma membrane. Atherosclerosis. 1999;146(2):309–19.
pubmed: 10532697 doi: 10.1016/S0021-9150(99)00155-0
Kruth HS. Lipoprotein cholesterol and atherosclerosis. Curr Mol Med. 2001;1(6):633–53.
pubmed: 11899253 doi: 10.2174/1566524013363212
Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999;340(2):115–26.
pubmed: 9887164 doi: 10.1056/NEJM199901143400207
Steinberg D. Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med. 2002;8(11):1211–7.
pubmed: 12411947 doi: 10.1038/nm1102-1211
Ong WY, Halliwell B. Iron, atherosclerosis, and neurodegeneration: a key role for cholesterol in promoting iron-dependent oxidative damage? Ann N Y Acad Sci. 2004;1012:51–64.
pubmed: 15105255 doi: 10.1196/annals.1306.005
Stefani M, Liguri G. Cholesterol in Alzheimer’s disease: unresolved questions. Curr Alzheimer Res. 2009;6(1):15–29.
pubmed: 19199871 doi: 10.2174/156720509787313899
Igoumenou A, Ebmeier KP. Diagnosing and managing vascular dementia. Practitioner. 2012;256(1747):13–6. 2
pubmed: 22720454
Ho YS, Poon DC, Chan TF, Chang RC. From small to big molecules: how do we prevent and delay the progression of age-related neurodegeneration? Curr Pharm Des. 2012;18(1):15–26.
pubmed: 22211681 doi: 10.2174/138161212798919039
Patterson MC, et al. Niemann-pick disease type C: a lipid trafficking disorder. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001. p. 3611–33.
Weiss JS. More on Schnyder corneal dystrophy. Ophthalmology. 2009;116(11):2260.
pubmed: 19883857 doi: 10.1016/j.ophtha.2009.07.022
Nowaczyk MJ, Irons MB. Smith-Lemli-Opitz syndrome: phenotype, natural history, and epidemiology. Am J Med Genet C Semin Med Genet. 2012;160C(4):250–62.
pubmed: 23059950 doi: 10.1002/ajmg.c.31343
Goldstein JL, Brown MS. Familial hypercholesterolemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw- Hill; 2001. p. 2863–901.
Henderson R, O’Kane M, McGilligan V, Watterson S. The genetics and screening of familial hypercholesterolaemia. J Biomed Sci. 2016;23:39.
pubmed: 27084339 pmcid: 4833930 doi: 10.1186/s12929-016-0256-1
Kolovou GD, Mikhailidis DP, Anagnostopoulou KK, Daskalopoulou SS, Cokkinos DV. Tangier disease four decades of research: a reflection of the importance of HDL. Curr Med Chem. 2006;13(7):771–82.
pubmed: 16611066 doi: 10.2174/092986706776055580
Escolà-Gil JC, Quesada H, Julve J, Martín-Campos JM, Cedó L, Blanco-Vaca F. Sitosterolemia: diagnosis, investigation, and management. Curr Atheroscler Rep. 2014;16(7):424.
pubmed: 24821603 doi: 10.1007/s11883-014-0424-2
Luo J, Yang H, Song BL. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2020;21(4):225–45.
pubmed: 31848472 doi: 10.1038/s41580-019-0190-7
Wang N, Fulcher J, Abeysuriya N, et al. Intensive LDL cholesterol-lowering treatment beyond current recommendations for the prevention of major vascular events: a systematic review and meta-analysis of randomised trials including 327 037 participants. Lancet Diabetes Endocrinol. 2020;8(1):36–49.
pubmed: 31862150 doi: 10.1016/S2213-8587(19)30388-2
Shibuya Y, Chang CC, Chang TY. ACAT1/SOAT1 as a therapeutic target for Alzheimer’s disease. Future Med Chem. 2015;7(18):2451–67.
pubmed: 26669800 pmcid: 4976859 doi: 10.4155/fmc.15.161
Kuzu OF, Noory MA, Robertson GP. The role of cholesterol in cancer. Cancer Res. 2016;76(8):2063–70.
pubmed: 27197250 pmcid: 5813477 doi: 10.1158/0008-5472.CAN-15-2613
Silvente-Poirot S, Poirot M. Cancer. Cholesterol and cancer, in the balance. Science. 2014;343(6178):1445–6.
pubmed: 24675946 doi: 10.1126/science.1252787
Di Paolo G, Kim TW. Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat Rev Neurosci. 2011;12(5):284–96.
pubmed: 21448224 pmcid: 3321383 doi: 10.1038/nrn3012
Madra M, Sturley SL. Niemann-Pick type C pathogenesis and treatment: from statins to sugars. Clin Lipidol. 2010;5(3):387–95.
pubmed: 21394236 pmcid: 3050622 doi: 10.2217/clp.10.19
Bloch KE. Sterol structure and membrane function. CRC Crit Rev Biochem. 1983;14(1):47–92.
pubmed: 6340956 doi: 10.3109/10409238309102790
Bloch K. The biological synthesis of cholesterol. Science. 1965;150(3692):19–28.
pubmed: 5319508 doi: 10.1126/science.150.3692.19
Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;343(6257):425–30.
pubmed: 1967820 doi: 10.1038/343425a0
Brown AJ, Coates HW, Sharpe LJ. Chapter 10 – Cholesterol synthesis. In: Ridgway ND, McLeod RS, editors. Biochemistry of lipids, lipoproteins and membranes. 7th ed. Elsevier; 2021. p. 317–55.
doi: 10.1016/B978-0-12-824048-9.00005-5
Bhattarai A, Likos EM, Weyman CM, Shukla GC. Regulation of cholesterol biosynthesis and lipid metabolism: a microRNA management perspective. Steroids. 2021;173:108878.
pubmed: 34174291 doi: 10.1016/j.steroids.2021.108878
Dietschy JM. Regulation of cholesterol metabolism in man and in other species. Klin Wochenschr. 1984;62(8):338–45.
pubmed: 6328101 doi: 10.1007/BF01716251
Gälman C, Angelin B, Rudling M. Bile acid synthesis in humans has a rapid diurnal variation that is asynchronous with cholesterol synthesis. Gastroenterology. 2005;129(5):1445–53.
pubmed: 16285946 doi: 10.1053/j.gastro.2005.09.009
Dietschy JM, Turley SD. Control of cholesterol turnover in the mouse. J Biol Chem. 2002;277(6):3801–4.
pubmed: 11733542 doi: 10.1074/jbc.R100057200
Zhang J, Liu Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell. 2015;6(4):254–64.
pubmed: 25682154 pmcid: 4383754 doi: 10.1007/s13238-014-0131-3
Jeske DJ, Dietschy JM. Regulation of rates of cholesterol synthesis in vivo in the liver and carcass of the rat measured using [3H] water. J Lipid Res. 1980;21(3):364–76.
pubmed: 7189770 doi: 10.1016/S0022-2275(20)39816-3
Gaylor JL. Membrane-bound enzymes of cholesterol synthesis from lanosterol. Biochem Biophys Res Commun. 2002;292(5):1139–46.
pubmed: 11969204 doi: 10.1006/bbrc.2001.2008
Sharpe LJ, Coates HW, Brown AJ. Post-translational control of the long and winding road to cholesterol. J Biol Chem. 2020;295(51):17549–59.
pubmed: 33453997 pmcid: 7762936 doi: 10.1074/jbc.REV120.010723
Kandutsch AA, Russell AE. Preputial gland tumor sterols. 3. A metabolic pathway from lanosterol to cholesterol. J Biol Chem. 1960;235:2256–61.
pubmed: 14404284 doi: 10.1016/S0021-9258(18)64608-3
Mitsche MA, McDonald JG, Hobbs HH, Cohen JC. Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways. Elife. 2015;4:e07999.
pubmed: 26114596 pmcid: 4501332 doi: 10.7554/eLife.07999
Bucher NL, Overath P, Lynen F. beta-Hydroxy-beta-methyl-glutaryl coenzyme A reductase, cleavage and condensing enzymes in relation to cholesterol formation in rat liver. Biochim Biophys Acta. 1960;40:491–501.
pubmed: 13805544 doi: 10.1016/0006-3002(60)91390-1
Gill S, Stevenson J, Kristiana I, Brown AJ. Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase. Cell Metab. 2011;13(3):260–73.
pubmed: 21356516 doi: 10.1016/j.cmet.2011.01.015
Chua NK, Coates HW, Brown AJ. Squalene monooxygenase: a journey to the heart of cholesterol synthesis. Prog Lipid Res. 2020;79:101033.
pubmed: 32360125 doi: 10.1016/j.plipres.2020.101033
Sharpe LJ, Brown AJ. Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). J Biol Chem. 2013;288(26):18707–15.
pubmed: 23696639 pmcid: 3696645 doi: 10.1074/jbc.R113.479808
Ye J, DeBose-Boyd RA. Regulation of cholesterol and fatty acid synthesis. Cold Spring Harb Perspect Biol. 2011;3(7):a004754.
pubmed: 21504873 pmcid: 3119913 doi: 10.1101/cshperspect.a004754
Yan R, Cao P, Song W, et al. A structure of human Scap bound to Insig-2 suggests how their interaction is regulated by sterols. Science. 2021;371(6533):eabb2224.
pubmed: 33446483 doi: 10.1126/science.abb2224
Gong X, Qian H, Shao W, et al. Complex structure of the fission yeast SREBP-SCAP binding domains reveals an oligomeric organization. Cell Res. 2016;26(11):1197–211.
pubmed: 27811944 pmcid: 5099872 doi: 10.1038/cr.2016.123
Párraga A, Bellsolell L, Ferré-D’Amaré AR, Burley SK. Co-crystal structure of sterol regulatory element binding protein 1a at 2.3 A resolution. Structure. 1998;6(5):661–72.
pubmed: 9634703 doi: 10.1016/S0969-2126(98)00067-7
Radhakrishnan A, Goldstein JL, McDonald JG, Brown MS. Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab. 2008;8(6):512–21.
pubmed: 19041766 pmcid: 2652870 doi: 10.1016/j.cmet.2008.10.008
Jo Y, Lee PC, Sguigna PV, DeBose-Boyd RA. Sterol-induced degradation of HMG CoA reductase depends on interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8. Proc Natl Acad Sci U S A. 2011;108(51):20503–8.
pubmed: 22143767 pmcid: 3251157 doi: 10.1073/pnas.1112831108
Menzies SA, Volkmar N, van den Boomen DJ, et al. The sterol-responsive RNF145 E3 ubiquitin ligase mediates the degradation of HMG-CoA reductase together with gp78 and Hrd1. Elife. 2018;7:e40009.
pubmed: 30543180 pmcid: 6292692 doi: 10.7554/eLife.40009
Tsai YC, Leichner GS, Pearce MM, et al. Differential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system. Mol Biol Cell. 2012;23(23):4484–94.
pubmed: 23087214 pmcid: 3510011 doi: 10.1091/mbc.e12-08-0631
Zelcer N, Sharpe LJ, Loregger A, et al. The E3 ubiquitin ligase MARCH6 degrades squalene monooxygenase and affects 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and the cholesterol synthesis pathway. Mol Cell Biol. 2014;34(7):1262–70.
pubmed: 24449766 pmcid: 3993563 doi: 10.1128/MCB.01140-13
Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43(Database issue):D512–20.
pubmed: 25514926 doi: 10.1093/nar/gku1267
UniProt Consortium T. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018;46(5):2699.
pubmed: 29425356 pmcid: 5861450 doi: 10.1093/nar/gky092
UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506–15.
doi: 10.1093/nar/gky1049
Clarke PR, Hardie DG. Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. EMBO J. 1990;9(8):2439–46.
pubmed: 2369897 pmcid: 552270 doi: 10.1002/j.1460-2075.1990.tb07420.x
Prabhu AV, Luu W, Sharpe LJ, Brown AJ. Phosphorylation regulates activity of 7-dehydrocholesterol reductase (DHCR7), a terminal enzyme of cholesterol synthesis. J Steroid Biochem Mol Biol. 2017;165(Pt B):363–8.
pubmed: 27520299 doi: 10.1016/j.jsbmb.2016.08.003
Jeon H, Blacklow SC. Structure and physiologic function of the low-density lipoprotein receptor. Annu Rev Biochem. 2005;74:535–62.
pubmed: 15952897 doi: 10.1146/annurev.biochem.74.082803.133354
Wijers M, Kuivenhoven JA, van de Sluis B. The life cycle of the low-density lipoprotein receptor: insights from cellular and in-vivo studies. Curr Opin Lipidol. 2015;26(2):82–7.
pubmed: 25692346 doi: 10.1097/MOL.0000000000000157
Rudenko G, Henry L, Henderson K, et al. Structure of the LDL receptor extracellular domain at endosomal pH. Science. 2002;298(5602):2353–8.
pubmed: 12459547 doi: 10.1126/science.1078124
Kwon HJ, Abi-Mosleh L, Wang ML, et al. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell. 2009;137(7):1213–24.
pubmed: 19563754 pmcid: 2739658 doi: 10.1016/j.cell.2009.03.049
Gong X, Qian H, Zhou X, et al. Structural insights into the niemann-pick C1 (NPC1)-mediated cholesterol transfer and Ebola infection. Cell. 2016;165(6):1467–78.
pubmed: 27238017 pmcid: 7111323 doi: 10.1016/j.cell.2016.05.022
Cologna SM, Rosenhouse-Dantsker A. Insights into the molecular mechanisms of cholesterol binding to the NPC1 and NPC2 proteins. Adv Exp Med Biol. 2019;1135:139–60.
pubmed: 31098815 doi: 10.1007/978-3-030-14265-0_8
Storch J, Xu Z. Niemann-pick C2 (NPC2) and intracellular cholesterol trafficking. Biochim Biophys Acta. 2009;1791(7):671–8.
pubmed: 19232397 pmcid: 4281484 doi: 10.1016/j.bbalip.2009.02.001
Pfeffer SR. NPC intracellular cholesterol transporter 1 (NPC1)-mediated cholesterol export from lysosomes. J Biol Chem. 2019;294(5):1706–9.
pubmed: 30710017 pmcid: 6364775 doi: 10.1074/jbc.TM118.004165
Meng Y, Heybrock S, Neculai D, Saftig P. Cholesterol handling in lysosomes and beyond. Trends Cell Biol. 2020;30(6):452–66.
pubmed: 32413315 doi: 10.1016/j.tcb.2020.02.007
Dietschy JM, Turley SD. Cholesterol metabolism in the brain. Curr Opin Lipidol. 2001;12(2):105–12.
pubmed: 11264981 doi: 10.1097/00041433-200104000-00003
Björkhem I, Meaney S. Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol. 2004;24(5):806–15.
pubmed: 14764421 doi: 10.1161/01.ATV.0000120374.59826.1b
Zhang J, Liu Q. Cholesterol metabolism and homeostasis in the brain. Protein Cell. 2015;6(4):254–64.
pubmed: 25682154 pmcid: 4383754 doi: 10.1007/s13238-014-0131-3
Bukiya AN, Blank PS, Rosenhouse-Dantsker A. Cholesterol intake and statin use regulate neuronal G protein-gated inwardly rectifying potassium channels. J Lipid Res. 2019;60(1):19–29.
pubmed: 30420402 doi: 10.1194/jlr.M081240
Altmann SW, Davis HR Jr, Zhu LJ, et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science. 2004;303(5661):1201–4.
pubmed: 14976318 doi: 10.1126/science.1093131
Zhang JH, Ge L, Qi W, et al. The N-terminal domain of NPC1L1 protein binds cholesterol and plays essential roles in cholesterol uptake. J Biol Chem. 2011;286(28):25088–97.
pubmed: 21602275 pmcid: 3137082 doi: 10.1074/jbc.M111.244475
Kwon HJ, Palnitkar M, Deisenhofer J. The structure of the NPC1L1 N-terminal domain in a closed conformation. PLoS One. 2011;6(4):e18722.
pubmed: 21525977 pmcid: 3078110 doi: 10.1371/journal.pone.0018722
Li PS, Fu ZY, Zhang YY, et al. The clathrin adaptor Numb regulates intestinal cholesterol absorption through dynamic interaction with NPC1L1. Nat Med. 2014;20(1):80–6.
pubmed: 24336247 doi: 10.1038/nm.3417
Gelissen IC, Harris M, Rye KA, et al. ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler Thromb Vasc Biol. 2006;26(3):534–40.
pubmed: 16357317 doi: 10.1161/01.ATV.0000200082.58536.e1
Costet P, Luo Y, Wang N, Tall AR. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem. 2000;275(36):28240–5.
pubmed: 10858438 doi: 10.1074/jbc.M003337200
Sallam T, Jones M, Thomas BJ, et al. Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA. Nat Med. 2018;24(3):304–12.
pubmed: 29431742 pmcid: 5839972 doi: 10.1038/nm.4479
Yamauchi Y, Iwamoto N, Rogers MA, et al. Deficiency in the lipid exporter ABCA1 impairs retrograde sterol movement and disrupts sterol sensing at the endoplasmic reticulum. J Biol Chem. 2015;290(39):23464–77.
pubmed: 26198636 pmcid: 4583027 doi: 10.1074/jbc.M115.662668
Tarling EJ, Edwards PA. ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter. Proc Natl Acad Sci U S A. 2011;108(49):19719–24.
pubmed: 22095132 pmcid: 3241749 doi: 10.1073/pnas.1113021108
Sankaranarayanan S, Oram JF, Asztalos BF, et al. Effects of acceptor composition and mechanism of ABCG1-mediated cellular free cholesterol efflux. J Lipid Res. 2009;50(2):275–84.
pubmed: 18827283 pmcid: 2636919 doi: 10.1194/jlr.M800362-JLR200
Kennedy MA, Venkateswaran A, Tarr PT, et al. Characterization of the human ABCG1 gene: liver X receptor activates an internal promoter that produces a novel transcript encoding an alternative form of the protein. J Biol Chem. 2001;276(42):39438–47.
pubmed: 11500512 doi: 10.1074/jbc.M105863200
Graf GA, Yu L, Li WP, et al. ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J Biol Chem. 2003;278(48):48275–82.
pubmed: 14504269 doi: 10.1074/jbc.M310223200
Wang J, Mitsche MA, Lütjohann D, Cohen JC, Xie XS, Hobbs HH. Relative roles of ABCG5/ABCG8 in liver and intestine. J Lipid Res. 2015;56(2):319–30.
pubmed: 25378657 pmcid: 4306686 doi: 10.1194/jlr.M054544
Lee JY, Kinch LN, Borek DM, et al. Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature. 2016;533(7604):561–4.
pubmed: 27144356 pmcid: 4964963 doi: 10.1038/nature17666
Su YR, Dove DE, Major AS, et al. Reduced ABCA1-mediated cholesterol efflux and accelerated atherosclerosis in apolipoprotein E-deficient mice lacking macrophage-derived ACAT1. Circulation. 2005;111(18):2373–81.
pubmed: 15851589 doi: 10.1161/01.CIR.0000164236.19860.13
Wang N, Silver DL, Thiele C, Tall AR. ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J Biol Chem. 2001;276(26):23742–7.
pubmed: 11309399 doi: 10.1074/jbc.M102348200
Wang N, Silver DL, Costet P, Tall AR. Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J Biol Chem. 2000;275(42):33053–8.
pubmed: 10918065 doi: 10.1074/jbc.M005438200
Fielding CJ, Fielding PE. Cellular cholesterol efflux. Biochim Biophys Acta. 2001;1533(3):175–89.
pubmed: 11731329 doi: 10.1016/S1388-1981(01)00162-7
Chang TY, Li BL, Chang CC, Urano Y. Acyl-coenzyme A: cholesterol acyltransferases. Am J Physiol Endocrinol Metab. 2009;297(1):E1–9.
pubmed: 19141679 pmcid: 2711667 doi: 10.1152/ajpendo.90926.2008
Iaea DB, Maxfield FR. Cholesterol trafficking and distribution. Essays Biochem. 2015;57:43–55.
pubmed: 25658343 doi: 10.1042/bse0570043
Chu BB, Liao YC, Qi W, et al. Cholesterol transport through lysosome-peroxisome membrane contacts. Cell. 2015;161(2):291–306.
pubmed: 25860611 doi: 10.1016/j.cell.2015.02.019
Luo J, Jiang LY, Yang H, Song BL. Intracellular cholesterol transport by sterol transfer proteins at membrane contact sites. Trends Biochem Sci. 2019;44(3):273–92.
pubmed: 30415968 doi: 10.1016/j.tibs.2018.10.001
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Annexins bridging the gap: novel roles in membrane contact site formation. Front Cell Dev Biol. 2022;9:797949.
pubmed: 35071237 pmcid: 8770259 doi: 10.3389/fcell.2021.797949
Du X, Kumar J, Ferguson C, et al. A role for oxysterol-binding protein-related protein 5 in endosomal cholesterol trafficking. J Cell Biol. 2011;192(1):121–35.
pubmed: 21220512 pmcid: 3019559 doi: 10.1083/jcb.201004142
Zhao K, Ridgway ND. Oxysterol-binding protein-related protein 1L regulates cholesterol egress from the endo-lysosomal system. Cell Rep. 2017;19(9):1807–18.
pubmed: 28564600 doi: 10.1016/j.celrep.2017.05.028
Wang H, Ma Q, Qi Y, et al. ORP2 delivers cholesterol to the plasma membrane in exchange for phosphatidylinositol 4, 5-bisphosphate (PI(4,5)P
pubmed: 30581148 doi: 10.1016/j.molcel.2018.11.014
Beh CT, McMaster CR, Kozminski KG, Menon AK. A detour for yeast oxysterol binding proteins. J Biol Chem. 2012;287(14):11481–8.
pubmed: 22334669 pmcid: 3322883 doi: 10.1074/jbc.R111.338400
Soccio RE, Breslow JL. StAR-related lipid transfer (START) proteins: mediators of intracellular lipid metabolism. J Biol Chem. 2003;278(25):22183–6.
pubmed: 12724317 doi: 10.1074/jbc.R300003200
Lusa S, Heino S, Ikonen E. Differential mobilization of newly synthesized cholesterol and biosynthetic sterol precursors from cells. J Biol Chem. 2003;278(22):19844–51.
pubmed: 12657643 doi: 10.1074/jbc.M212503200
Mesmin B, Pipalia NH, Lund FW, et al. STARD4 abundance regulates sterol transport and sensing. Mol Biol Cell. 2011;22(21):4004–15.
pubmed: 21900492 pmcid: 3204063 doi: 10.1091/mbc.e11-04-0372
Levine T. Short-range intracellular trafficking of small molecules across endoplasmic reticulum junctions. Trends Cell Biol. 2004;14(9):483–90.
pubmed: 15350976 doi: 10.1016/j.tcb.2004.07.017
Romanowski MJ, Soccio RE, Breslow JL, Burley SK. Crystal structure of the Mus musculus cholesterol-regulated START protein 4 (StarD4) containing a StAR-related lipid transfer domain. Proc Natl Acad Sci U S A. 2002;99(10):6949–54.
pubmed: 12011453 pmcid: 124509 doi: 10.1073/pnas.052140699
Im YJ, Raychaudhuri S, Prinz WA, Hurley JH. Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature. 2005;437(7055):154–8.
pubmed: 16136145 pmcid: 1431608 doi: 10.1038/nature03923
Murcia M, Faráldo-Gómez JD, Maxfield FR, Roux B. Modeling the structure of the StART domains of MLN64 and StAR proteins in complex with cholesterol. J Lipid Res. 2006;47(12):2614–30.
pubmed: 16990645 doi: 10.1194/jlr.M600232-JLR200
Prinz WA. Non-vesicular sterol transport in cells. Prog Lipid Res. 2007;46(6):297–314.
pubmed: 17709145 pmcid: 2078525 doi: 10.1016/j.plipres.2007.06.002
Clark BJ. The mammalian START domain protein family in lipid transport in health and disease. J Endocrinol. 2012;212(3):257–75.
pubmed: 21965545 doi: 10.1530/JOE-11-0313
Frolov A, Woodford JK, Murphy EJ, Billheimer JT, Schroeder F. Spontaneous and protein-mediated sterol transfer between intracellular membranes. J Biol Chem. 1996;271(27):16075–83.
pubmed: 8663152 doi: 10.1074/jbc.271.27.16075
Gulyás G, Sohn M, Kim YJ, Várnai P, Balla T. ORP3 phosphorylation regulates phosphatidylinositol 4-phosphate and Ca
pubmed: 32041906 pmcid: 7097422 doi: 10.1242/jcs.237388
Sohn M, Toth DJ, Balla T. Monitoring non-vesicular transport of phosphatidylserine and phosphatidylinositol 4-phosphate in intact cells by BRET analysis. Methods Mol Biol. 1949;2019:13–22.
Rocha N, Kuijl C, van der Kant R, et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. J Cell Biol. 2009;185(7):1209–25.
pubmed: 19564404 pmcid: 2712958 doi: 10.1083/jcb.200811005
van der Kant R, Zondervan I, Janssen L, Neefjes J. Cholesterol-binding molecules MLN64 and ORP1L mark distinct late endosomes with transporters ABCA3 and NPC1. J Lipid Res. 2013;54(8):2153–65.
pubmed: 23709693 pmcid: 3708365 doi: 10.1194/jlr.M037325
Johansson M, Bocher V, Lehto M, et al. The two variants of oxysterol binding protein-related protein-1 display different tissue expression patterns, have different intracellular localization, and are functionally distinct. Mol Biol Cell. 2003;14(3):903–15.
pubmed: 12631712 pmcid: 151568 doi: 10.1091/mbc.e02-08-0459
Johansson M, Lehto M, Tanhuanpää K, Cover TL, Olkkonen VM. The oxysterol-binding protein homologue ORP1L interacts with Rab7 and alters functional properties of late endocytic compartments. Mol Biol Cell. 2005;16(12):5480–92.
pubmed: 16176980 pmcid: 1289395 doi: 10.1091/mbc.e05-03-0189
Loewen CJ, Levine TP. A highly conserved binding site in vesicle-associated membrane protein-associated protein (VAP) for the FFAT motif of lipid-binding proteins. J Biol Chem. 2005;280(14):14097–104.
pubmed: 15668246 doi: 10.1074/jbc.M500147200
Vihervaara T, Uronen RL, Wohlfahrt G, Björkhem I, Ikonen E, Olkkonen VM. Sterol binding by OSBP-related protein 1L regulates late endosome motility and function. Cell Mol Life Sci. 2011;68(3):537–51.
pubmed: 20690035 doi: 10.1007/s00018-010-0470-z
Zhao K, Ridgway ND. Oxysterol-binding protein-related protein 1L regulates cholesterol egress from the endo-lysosomal system. Cell Rep. 2017;19(9):1807–18.
pubmed: 28564600 doi: 10.1016/j.celrep.2017.05.028
Soccio RE, Breslow JL. Intracellular cholesterol transport. Arterioscler Thromb Vasc Biol. 2004;24(7):1150–60.
pubmed: 15130918 doi: 10.1161/01.ATV.0000131264.66417.d5
Schade DS, Shey L, Eaton RP. Cholesterol review: a metabolically important molecule. Endocr Pract. 2020;26(12):1514–23.
pubmed: 33471744 doi: 10.4158/EP-2020-0347
Rudney H, Sexton RC. Regulation of cholesterol biosynthesis. Annu Rev Nutr. 1986;6:245–72.
pubmed: 3524618 doi: 10.1146/annurev.nu.06.070186.001333
Luu W, Sharpe LJ, Gelissen IC, Brown AJ. The role of signalling in cellular cholesterol homeostasis. IUBMB Life. 2013;65(8):675–84.
pubmed: 23847008 doi: 10.1002/iub.1182
Hall RH. N6-(delta 2-isopentenyl)adenosine: chemical reactions, biosynthesis, metabolism, and significance to the structure and function of tRNA. Prog Nucleic Acid Res Mol Biol. 1970;10:57–86.
pubmed: 4910306 doi: 10.1016/S0079-6603(08)60561-9
Shi Z, Ruvkun G. The mevalonate pathway regulates microRNA activity in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2012;109(12):4568–73.
pubmed: 22396595 pmcid: 3311396 doi: 10.1073/pnas.1202421109
Chojnacki T, Dallner G. The biological role of dolichol. Biochem J. 1988;251(1):1–9.
pubmed: 3291859 pmcid: 1148956 doi: 10.1042/bj2510001
Löw P, Dallner G, Mayor S, Cohen S, Chait BT, Menon AK. The mevalonate pathway in the bloodstream form of Trypanosoma brucei. Identification of dolichols containing 11 and 12 isoprene residues. J Biol Chem. 1991;266(29):19250–7.
pubmed: 1918042 doi: 10.1016/S0021-9258(18)54990-5
Caughey WS, Smythe GA, O’Keeffe DH, Maskasky JE, Smith MI. Heme A of cytochrome c oxicase. Structure and properties: comparisons with hemes B, C, and S and derivatives. J Biol Chem. 1975;250(19):7602–22.
pubmed: 170266 doi: 10.1016/S0021-9258(19)40860-0
Ernster L, Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta. 1995;1271(1):195–204.
pubmed: 7599208 doi: 10.1016/0925-4439(95)00028-3
Kalén A, Norling B, Appelkvist EL, Dallner G. Ubiquinone biosynthesis by the microsomal fraction from rat liver. Biochim Biophys Acta. 1987;926(1):70–8.
pubmed: 3651503 doi: 10.1016/0304-4165(87)90183-8
Palsuledesai CC, Distefano MD. Protein prenylation: enzymes, therapeutics, and biotechnology applications. ACS Chem Biol. 2015;10(1):51–62.
pubmed: 25402849 doi: 10.1021/cb500791f
Hildebrandt JD. Heterogeneous prenyl processing of the heterotrimeric G protein gamma subunits (Chapter 6). In: Tamanoi F, Hrycyna CA, Bergo MO, editors. The enzymes, vol. 29. Academic; 2011. p. 97–124.
Davies BSJ, Coffinier C, Yang SH, Jung H-J, Fong LG, Young SG. Posttranslational processing of nuclear lamins (Chapter 3). In: Tamanoi F, Hrycyna CA, Bergo MO, editors. The enzymes, vol. 29. Academic; 2011. p. 21–41.
Wong J, Quinn CM, Gelissen IC, Brown AJ. Endogenous 24(S),25-epoxycholesterol fine-tunes acute control of cellular cholesterol homeostasis. J Biol Chem. 2008;283:700–7.
pubmed: 17981807 doi: 10.1074/jbc.M706416200
Bjorkhem I, Diczfalusy U. 24(S),25-epoxycholesterol--a potential friend. Arterioscler Thromb Vasc Biol. 2004;24(12):2209–10.
pubmed: 15576644 doi: 10.1161/01.ATV.0000148704.72481.28
Brown AJ. 24(S),25-epoxycholesterol: a messenger for cholesterol homeostasis. Int J Biochem Cell Biol. 2009;41(4):744–7.
pubmed: 18725318 doi: 10.1016/j.biocel.2008.05.029
Zerenturk EJ, Kristiana I, Gill S, Brown AJ. The endogenous regulator 24(S),25-epoxycholesterol inhibits cholesterol synthesis at DHCR24 (Seladin-1). Biochim Biophys Acta. 2012;1821(9):1269–77.
pubmed: 22178193 doi: 10.1016/j.bbalip.2011.11.009
Mitsche MA, McDonald JG, Hobbs HH, Cohen JC. Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways. Elife. 2015;4:e07999.
pubmed: 26114596 pmcid: 4501332 doi: 10.7554/eLife.07999
Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319–29.
pubmed: 24529992 pmcid: 3968073 doi: 10.1016/j.chembiol.2013.12.016
Carlberg C. Nutrigenomics of vitamin D. Nutrients. 2019;11(3):676.
pubmed: 30901909 pmcid: 6470874 doi: 10.3390/nu11030676
Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96(1):365–408.
pubmed: 26681795 doi: 10.1152/physrev.00014.2015
Luu W, Sharpe LJ, Capell-Hattam I, Gelissen IC, Brown AJ. Oxysterols: old tale, new twists. Annu Rev Pharmacol Toxicol. 2016;56:447–67.
pubmed: 26738477 doi: 10.1146/annurev-pharmtox-010715-103233
Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, Goldstein JL. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc Natl Acad Sci U S A. 2007;104(16):6511–8.
pubmed: 17428920 pmcid: 1851665 doi: 10.1073/pnas.0700899104
Gale SE, Westover EJ, Dudley N, et al. Side chain oxygenated cholesterol regulates cellular cholesterol homeostasis through direct sterol-membrane interactions. J Biol Chem. 2009;284(3):1755–64.
pubmed: 18996837 pmcid: 2615513 doi: 10.1074/jbc.M807210200
Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature. 1996;383(6602):728–31.
pubmed: 8878485 doi: 10.1038/383728a0
DeBose-Boyd RA. Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res. 2008;18(6):609–21.
pubmed: 18504457 doi: 10.1038/cr.2008.61
Solt LA, Burris TP. Action of RORs and their ligands in (patho)physiology. Trends Endocrinol Metab. 2012;23(12):619–27.
pubmed: 22789990 pmcid: 3500583 doi: 10.1016/j.tem.2012.05.012
Wang Y, Kumar N, Solt LA, et al. Modulation of retinoic acid receptor-related orphan receptor alpha and gamma activity by 7-oxygenated sterol ligands. J Biol Chem. 2010;285(7):5013–25.
pubmed: 19965867 doi: 10.1074/jbc.M109.080614
Subczynski WK, Pasenkiewicz-Gierula M, Widomska J, Mainali L, Raguz M. High cholesterol/low cholesterol: effects in biological membranes: a review. Cell Biochem Biophys. 2017;75(3-4):369–85.
pubmed: 28417231 pmcid: 5645210 doi: 10.1007/s12013-017-0792-7
Gu RX, Baoukina S, Tieleman DP. Cholesterol flip-flop in heterogeneous membranes. J Chem Theory Comput. 2019;15(3):2064–70.
pubmed: 30633868 doi: 10.1021/acs.jctc.8b00933
Bretscher MS, Munro S. Cholesterol and the Golgi apparatus. Science. 1993;261(5126):1280–1.
pubmed: 8362242 doi: 10.1126/science.8362242
Schroeder F, Frolov AA, Murphy EJ, et al. Recent advances in membrane cholesterol domain dynamics and intracellular cholesterol trafficking. Proc Soc Exp Biol Med. 1996;213(2):150–77.
pubmed: 8931661 doi: 10.3181/00379727-213-44047
Lange Y, Ye J, Rigney M, Steck TL. Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol. J Lipid Res. 1999;40(12):2264–70.
pubmed: 10588952 doi: 10.1016/S0022-2275(20)32101-5
van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112–24.
pubmed: 18216768 pmcid: 2642958 doi: 10.1038/nrm2330
Lange Y, Ramos BV. Analysis of the distribution of cholesterol in the intact cell. J Biol Chem. 1983;258(24):15130–4.
pubmed: 6418742 doi: 10.1016/S0021-9258(17)43782-3
Liscum L, Munn NJ. Intracellular cholesterol transport. Biochim Biophys Acta. 1999;1438(1):19–37.
pubmed: 10216277 doi: 10.1016/S1388-1981(99)00043-8
Haines TH. Do sterols reduce proton and sodium leaks through lipid bilayers? Prog Lipid Res. 2001;40(4):299–324.
pubmed: 11412894 doi: 10.1016/S0163-7827(01)00009-1
Spector AA, Yorek MA. Membrane lipid composition and cellular function. J Lipid Res. 1985;26(9):1015–35.
pubmed: 3906008 doi: 10.1016/S0022-2275(20)34276-0
Shinitzky M, Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta. 1978;515(4):367–94.
pubmed: 365237 doi: 10.1016/0304-4157(78)90010-2
Li LK, So L, Spector A. Membrane cholesterol and phospholipid in consecutive concentric sections of human lenses. J Lipid Res. 1985;26(5):600–9.
pubmed: 4020298 doi: 10.1016/S0022-2275(20)34347-9
Li LK, So L, Spector A. Age-dependent changes in the distribution and concentration of human lens cholesterol and phospholipids. Biochim Biophys Acta. 1987;917(1):112–20.
pubmed: 3790601 doi: 10.1016/0005-2760(87)90291-8
Truscott RJ. Age-related nuclear cataract: a lens transport problem. Ophthalmic Res. 2000;32(5):185–94.
pubmed: 10971179 doi: 10.1159/000055612
Rivel T, Ramseyer C, Yesylevskyy S. The asymmetry of plasma membranes and their cholesterol content influence the uptake of cisplatin. Sci Rep. 2019;9(1):5627.
pubmed: 30948733 pmcid: 6449338 doi: 10.1038/s41598-019-41903-w
Buwaneka P, Ralko A, Liu SL, Cho W. Evaluation of the available cholesterol concentration in the inner leaflet of the plasma membrane of mammalian cells. J Lipid Res. 2021;62:100084.
pubmed: 33964305 pmcid: 8178126 doi: 10.1016/j.jlr.2021.100084
Sheng R, Chen Y, Yung Gee H, et al. Cholesterol modulates cell signaling and protein networking by specifically interacting with PDZ domain-containing scaffold proteins. Nat Commun. 2012;3:1249.
pubmed: 23212378 doi: 10.1038/ncomms2221
Sheng R, Kim H, Lee H, et al. Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling. Nat Commun. 2014;5:4393.
pubmed: 25024088 doi: 10.1038/ncomms5393
Francis KR, Ton AN, Xin Y, et al. Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/β-catenin defects in neuronal cholesterol synthesis phenotypes. Nat Med. 2016;22(4):388–96.
pubmed: 26998835 pmcid: 4823163 doi: 10.1038/nm.4067
Brachet A, Norwood S, Brouwers JF, et al. LTP-triggered cholesterol redistribution activates Cdc42 and drives AMPA receptor synaptic delivery. J Cell Biol. 2015;208(6):791–806.
pubmed: 25753037 pmcid: 4362467 doi: 10.1083/jcb.201407122
Frechin M, Stoeger T, Daetwyler S, et al. Cell-intrinsic adaptation of lipid composition to local crowding drives social behaviour. Nature. 2015;523(7558):88–91.
pubmed: 26009010 doi: 10.1038/nature14429
Pagler TA, Wang M, Mondal M, et al. Deletion of ABCA1 and ABCG1 impairs macrophage migration because of increased Rac1 signaling. Circ Res. 2011;108(2):194–200.
pubmed: 21148432 doi: 10.1161/CIRCRESAHA.110.228619
Liu SL, Sheng R, Jung JH, et al. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nat Chem Biol. 2017;13(3):268–74.
pubmed: 28024150 doi: 10.1038/nchembio.2268
Zhang Y, Bulkley DP, Xin Y, et al. Structural basis for cholesterol transport-like activity of the hedgehog receptor patched. Cell. 2018;175(5):1352–1364.e14.
pubmed: 30415841 pmcid: 6326742 doi: 10.1016/j.cell.2018.10.026
Danielli JF, Davson HL. A contribution to the theory of permeability of thin films. Cell Comp Physiol. 1935;5:495–508.
doi: 10.1002/jcp.1030050409
Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175(4023):720–31.
pubmed: 4333397 doi: 10.1126/science.175.4023.720
Karnovsky MJ, Kleinfeld AM, Hoover RL, et al. Lipid domains in membranes. Ann N Y Acad Sci. 1982;401:61–75.
pubmed: 6762837 doi: 10.1111/j.1749-6632.1982.tb25707.x
Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387(6633):569–72.
pubmed: 9177342 doi: 10.1038/42408
Pralle A, Keller P, Florin EL, Simons K, Hörber JK. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol. 2000;148(5):997–1008.
pubmed: 10704449 pmcid: 2174552 doi: 10.1083/jcb.148.5.997
Villar VA, Cuevas S, Zheng X, Jose PA. Localization and signaling of GPCRs in lipid rafts. Methods Cell Biol. 2016;132:3–23.
pubmed: 26928536 doi: 10.1016/bs.mcb.2015.11.008
Ouweneel AB, Thomas MJ, Sorci-Thomas MG. The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis, microparticles, and cell membranes: thematic review Series: biology of lipid rafts. J Lipid Res. 2020;61(5):676–86.
pubmed: 33715815 doi: 10.1194/jlr.TR119000383
Ariotti N, Fernández-Rojo MA, Zhou Y, et al. Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. J Cell Biol. 2014;204(5):777–92.
pubmed: 24567358 pmcid: 3941050 doi: 10.1083/jcb.201307055
Palade GE. The fine structure of blood capillaries. J Appl Phys. 1953;24:1424.
Yamada E. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol. 1955;1(5):445–58.
pubmed: 13263332 pmcid: 2229656 doi: 10.1083/jcb.1.5.445
Parton RG, del Pozo MA. Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol. 2013;14(2):98–112.
pubmed: 23340574 doi: 10.1038/nrm3512
Simons K, Toomre D. Lipid rafts and signal transduction [published correction appears in Nat Rev Mol Cell Biol 2001 Mar;2(3):216]. Nat Rev Mol Cell Biol. 2000;1(1):31–9.
pubmed: 11413487 doi: 10.1038/35036052
Barnett-Norris J, Lynch D, Reggio PH. Lipids, lipid rafts and caveolae: their importance for GPCR signaling and their centrality to the endocannabinoid system. Life Sci. 2005;77(14):1625–39.
pubmed: 15993425 doi: 10.1016/j.lfs.2005.05.040
Sonnino S, Aureli M, Grassi S, Mauri L, Prioni S, Prinetti A. Lipid rafts in neurodegeneration and neuroprotection. Mol Neurobiol. 2014;50(1):130–48.
pubmed: 24362851 doi: 10.1007/s12035-013-8614-4
Gajate C, Mollinedo F. Lipid rafts and raft-mediated supramolecular entities in the regulation of CD95 death receptor apoptotic signaling. Apoptosis. 2015;20(5):584–606.
pubmed: 25702154 doi: 10.1007/s10495-015-1104-6
Jaffrès PA, Gajate C, Bouchet AM, et al. Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy. Pharmacol Ther. 2016;165:114–31.
pubmed: 27288726 doi: 10.1016/j.pharmthera.2016.06.003
Varshney P, Yadav V, Saini N. Lipid rafts in immune signalling: current progress and future perspective. Immunology. 2016;149(1):13–24.
pubmed: 27153983 pmcid: 4981613 doi: 10.1111/imm.12617
Lu SM, Fairn GD. Mesoscale organization of domains in the plasma membrane – beyond the lipid raft. Crit Rev Biochem Mol Biol. 2018;53(2):192–207.
pubmed: 29457544 doi: 10.1080/10409238.2018.1436515
Mollinedo F, Gajate C. Lipid rafts as signaling hubs in cancer cell survival/death and invasion: implications in tumor progression and therapy: thematic review series: biology of lipid rafts. J Lipid Res. 2020;61(5):611–35.
pubmed: 33715811 pmcid: 7193951 doi: 10.1194/jlr.TR119000439
Simons K, Sampaio JL. Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol. 2011;3(10):a004697.
pubmed: 21628426 pmcid: 3179338 doi: 10.1101/cshperspect.a004697
Pike LJ. Lipid rafts: bringing order to chaos. J Lipid Res. 2003;44(4):655–67.
pubmed: 12562849 doi: 10.1194/jlr.R200021-JLR200
Patel HH, Murray F, Insel PA. G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains. Handb Exp Pharmacol. 2008;186:167–84.
doi: 10.1007/978-3-540-72843-6_7
Janes PW, Ley SC, Magee AI, Kabouridis PS. The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol. 2000;12(1):23–34.
pubmed: 10723795 doi: 10.1006/smim.2000.0204
Langlet C, Bernard AM, Drevot P, He HT. Membrane rafts and signaling by the multichain immune recognition receptors. Curr Opin Immunol. 2000;12(3):250–5.
pubmed: 10781401 doi: 10.1016/S0952-7915(00)00084-4
Xavier R, Brennan T, Li Q, McCormack C, Seed B. Membrane compartmentation is required for efficient T cell activation. Immunity. 1998;8(6):723–32.
pubmed: 9655486 doi: 10.1016/S1074-7613(00)80577-4
Cheng PC, Dykstra ML, Mitchell RN, Pierce SK. A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J Exp Med. 1999;190(11):1549–60.
pubmed: 10587346 pmcid: 2195743 doi: 10.1084/jem.190.11.1549
Field KA, Holowka D, Baird B. Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc Natl Acad Sci U S A. 1995;92(20):9201–5.
pubmed: 7568101 pmcid: 40952 doi: 10.1073/pnas.92.20.9201
Sheets ED, Holowka D, Baird B. Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of FcepsilonRI and their association with detergent-resistant membranes. J Cell Biol. 1999;145(4):877–87.
pubmed: 10330413 pmcid: 2133197 doi: 10.1083/jcb.145.4.877
Mastick CC, Brady MJ, Saltiel AR. Insulin stimulates the tyrosine phosphorylation of caveolin. J Cell Biol. 1995;129(6):1523–31.
pubmed: 7540611 doi: 10.1083/jcb.129.6.1523
Roy S, Luetterforst R, Harding A, et al. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat Cell Biol. 1999;1(2):98–105.
pubmed: 10559881 doi: 10.1038/10067
Couet J, Sargiacomo M, Lisanti MP. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem. 1997;272(48):30429–38.
pubmed: 9374534 doi: 10.1074/jbc.272.48.30429
Waugh MG, Lawson D, Hsuan JJ. Epidermal growth factor receptor activation is localized within low-buoyant density, non-caveolar membrane domains. Biochem J. 1999;337(Pt 3):591–7.
pubmed: 9895306 pmcid: 1220014 doi: 10.1042/bj3370591
Staubach S, Razawi H, Hanisch FG. Proteomics of MUC1-containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF-7. Proteomics. 2009;9(10):2820–35.
pubmed: 19415654 doi: 10.1002/pmic.200800793
Raghu H, Sodadasu PK, Malla RR, Gondi CS, Estes N, Rao JS. Localization of uPAR and MMP-9 in lipid rafts is critical for migration, invasion and angiogenesis in human breast cancer cells. BMC Cancer. 2010;10:647.
pubmed: 21106094 pmcid: 3002355 doi: 10.1186/1471-2407-10-647
Ciarlo L, Vona R, Manganelli V, et al. Recruitment of mitofusin 2 into “lipid rafts” drives mitochondria fusion induced by Mdivi-1. Oncotarget. 2018;9(27):18869–84.
pubmed: 29721168 pmcid: 5922362 doi: 10.18632/oncotarget.24792
Ciarlo L, Manganelli V, Garofalo T, et al. Association of fission proteins with mitochondrial raft-like domains. Cell Death Differ. 2010;17(6):1047–58.
pubmed: 20075943 doi: 10.1038/cdd.2009.208
Sorice M, Manganelli V, Matarrese P, et al. Cardiolipin-enriched raft-like microdomains are essential activating platforms for apoptotic signals on mitochondria. FEBS Lett. 2009;583(15):2447–50.
pubmed: 19616549 doi: 10.1016/j.febslet.2009.07.018
Luo J, Jiang L, Yang H, Song BL. Routes and mechanisms of post-endosomal cholesterol trafficking: a story that never ends. Traffic. 2017;18(4):209–17.
pubmed: 28191915 doi: 10.1111/tra.12471
Tiwari S, Siddiqi SA. Intracellular trafficking and secretion of VLDL. Arterioscler Thromb Vasc Biol. 2012;32(5):1079–86.
pubmed: 22517366 pmcid: 3334296 doi: 10.1161/ATVBAHA.111.241471
Guerriero CJ, Lai Y, Weisz OA. Differential sorting and Golgi export requirements for raft-associated and raft-independent apical proteins along the biosynthetic pathway. J Biol Chem. 2008;283(26):18040–7.
pubmed: 18434305 pmcid: 2440606 doi: 10.1074/jbc.M802048200
Cohen AW, Hnasko R, Schubert W, Lisanti MP. Role of caveolae and caveolins in health and disease. Physiol Rev. 2004;84(4):1341–79.
pubmed: 15383654 doi: 10.1152/physrev.00046.2003
Liu P, Rudick M, Anderson RG. Multiple functions of caveolin-1. J Biol Chem. 2002;277(44):41295–8.
pubmed: 12189159 doi: 10.1074/jbc.R200020200
Morris R, Cox H, Mombelli E, Quinn PJ. Rafts, little caves and large potholes: how lipid structure interacts with membrane proteins to create functionally diverse membrane environments. Subcell Biochem. 2004;37:35–118.
pubmed: 15376618 doi: 10.1007/978-1-4757-5806-1_2
Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol. 2007;8(3):185–94.
pubmed: 17318224 doi: 10.1038/nrm2122
van Deurs B, Roepstorff K, Hommelgaard AM, Sandvig K. Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol. 2003;13(2):92–100.
pubmed: 12559760 doi: 10.1016/S0962-8924(02)00039-9
Yeagle P. The roles of cholesterol in the biology of cell (Chapter 6). In: Yeagle P, editor. The structure of biological membranes. CRC Press; 2012. p. 119–32.
Snipes GJ, Suter U. Cholesterol and myelin. Subcell Biochem. 1997;28:173–204.
pubmed: 9090295 doi: 10.1007/978-1-4615-5901-6_7
Mahley RW. Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism. Arterioscler Thromb Vasc Biol. 2016;36(7):1305–15.
pubmed: 27174096 pmcid: 4942259 doi: 10.1161/ATVBAHA.116.307023
Goasdoué K, Miller SM, Colditz PB, Björkman ST. Review: the blood-brain barrier; protecting the developing fetal brain. Placenta. 2017;54:111–6.
pubmed: 27939102 doi: 10.1016/j.placenta.2016.12.005
Hussain G, Wang J, Rasul A, et al. Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis. 2019;18(1):26.
pubmed: 30683111 pmcid: 6347843 doi: 10.1186/s12944-019-0965-z
Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the central nervous system: structure, function, and pathology. Physiol Rev. 2019;99(3):1381–431.
pubmed: 31066630 doi: 10.1152/physrev.00031.2018
Zalc B. The acquisition of myelin: a success story. In: Chadwick DJ, Goode J, editors. Purinergic signalling in neuron–glia interactions. London: Novartis Foundation; 2008.
Purves, D., Augustine, G., & Fitzpatrick, D. Increased conduction velocity as a result of myelination. In: Neuroscience. 2nd ed. Sunderland (MA): Sinauer Associates; 2001.
Huxley AF, Stämpfli R. Evidence for saltatory conduction in peripheral myelinated nerve fibres. J Physiol. 1949;108(3):315–39.
pubmed: 16991863 pmcid: 1392492 doi: 10.1113/jphysiol.1949.sp004335
Fields RD. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 2008;31(7):361–70.
pubmed: 18538868 pmcid: 2486416 doi: 10.1016/j.tins.2008.04.001
Forbes TA, Gallo V. All wrapped up: environmental effects on myelination. Trends Neurosci. 2017;40(9):572–87.
pubmed: 28844283 pmcid: 5671205 doi: 10.1016/j.tins.2017.06.009
Monje M. Myelin plasticity and nervous system function. Annu Rev Neurosci. 2018;41:61–76.
pubmed: 29986163 doi: 10.1146/annurev-neuro-080317-061853
Fünfschilling U, Supplie LM, Mahad D, et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature. 2012;485(7399):517–21.
pubmed: 22622581 pmcid: 3613737 doi: 10.1038/nature11007
Lee Y, Morrison BM, Li Y, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature. 2012;487(7408):443–8.
pubmed: 22801498 pmcid: 3408792 doi: 10.1038/nature11314
Cockcroft S. Mammalian lipids: structure, synthesis and function. Essays Biochem. 2021;65(5):813–45.
pubmed: 34415021 pmcid: 8578989 doi: 10.1042/EBC20200067
Plesnar E, Subczynski WK, Pasenkiewicz-Gierula M. Saturation with cholesterol increases vertical order and smoothes the surface of the phosphatidylcholine bilayer: a molecular simulation study. Biochimica et Biophysica Acta. 1818;2012:520–9.
Nezil FA, Bloom M. Combined influence of cholesterol and synthetic amphiphillic peptides upon bilayer thickness in model membranes. Biophys J. 1992;61(5):1176–83.
pubmed: 1600079 pmcid: 1260381 doi: 10.1016/S0006-3495(92)81926-4
Chen Z, Rand RP. The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys J. 1997;73(1):267–76.
pubmed: 9199791 pmcid: 1180928 doi: 10.1016/S0006-3495(97)78067-6
Rukmini R, Rawat SS, Biswas SC, Chattopadhyay A. Cholesterol organization in membranes at low concentrations: effects of curvature stress and membrane thickness. Biophys J. 2001;81(4):2122–34.
pubmed: 11566783 pmcid: 1301684 doi: 10.1016/S0006-3495(01)75860-2
Mukherjee S, Maxfield FR. Membrane domains. Annu Rev Cell Dev Biol. 2004;20:839–66.
pubmed: 15473862 doi: 10.1146/annurev.cellbio.20.010403.095451
Ryu YS, Lee IH, Suh JH, et al. Reconstituting ring-rafts in bud-mimicking topography of model membranes. Nat Commun. 2014;5:4507.
pubmed: 25058275 doi: 10.1038/ncomms5507
Ferguson SS. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev. 2001;53(1):1–24.
pubmed: 11171937
Hanyaloglu AC, von Zastrow M. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu Rev Pharmacol Toxicol. 2008;48:537–68.
pubmed: 18184106 doi: 10.1146/annurev.pharmtox.48.113006.094830
Magalhaes AC, Dunn H, Ferguson SS. Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br J Pharmacol. 2012;165(6):1717–36.
pubmed: 21699508 pmcid: 3372825 doi: 10.1111/j.1476-5381.2011.01552.x
Irie T, Fukunaga K, Pitha J. Hydroxypropylcyclodextrins in parenteral use. I: Lipid dissolution and effects on lipid transfers in vitro. J Pharm Sci. 1992;81:521–3.
pubmed: 1522487 doi: 10.1002/jps.2600810609
Ohtani Y, Irie T, Uekama K, Fukunaga K, Pitha J. Differential effects of alpha-, beta- and gamma-cyclodextrins on human erythrocytes. Eur J Biochem. 1989;186:17–22.
pubmed: 2598927 doi: 10.1111/j.1432-1033.1989.tb15171.x
Ohvo H, Slotte JP. Cyclodextrin-mediated removal of sterols from monolayers: effects of sterol structure and phospholipids on desorption rate. Biochemistry. 1996;35:8018–24.
pubmed: 8672506 doi: 10.1021/bi9528816
Christian AE, Haynes MP, Phillips MC, Rothblat GH. Use of cyclodextrins for manipulating cellular cholesterol content. J Lipid Res. 1997;38(11):2264–72.
pubmed: 9392424 doi: 10.1016/S0022-2275(20)34940-3
Zidovetzki R, Levitan I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta. 2007;1768(6):1311–24.
pubmed: 17493580 pmcid: 1948080 doi: 10.1016/j.bbamem.2007.03.026
Urs NM, Jones KT, Salo PD, Severin JE, Trejo J, Radhakrishna H. A requirement for membrane cholesterol in the beta-arrestin- and clathrin-dependent endocytosis of LPA1 lysophosphatidic acid receptors. J Cell Sci. 2005;118(Pt 22):5291–304.
pubmed: 16263766 doi: 10.1242/jcs.02634
Brejchova J, Vosahlikova M, Roubalova L, et al. Plasma membrane cholesterol level and agonist-induced internalization of δ-opioid receptors; colocalization study with intracellular membrane markers of Rab family. J Bioenerg Biomembr. 2016;48(4):375-396.
Kumar GA, Chattopadhyay A. Statin-induced chronic cholesterol depletion switches GPCR endocytosis and trafficking: insights from the serotonin
pubmed: 31880914 doi: 10.1021/acschemneuro.9b00659
Borroni V, Baier CJ, Lang T, et al. Cholesterol depletion activates rapid internalization of submicron-sized acetylcholine receptor domains at the cell membrane. Mol Membr Biol. 2007;24(1):1–15.
pubmed: 17453409 doi: 10.1080/09687860600903387
Borroni V, Barrantes FJ. Cholesterol modulates the rate and mechanism of acetylcholine receptor internalization. J Biol Chem. 2011;286(19):17122–32.
pubmed: 21357688 pmcid: 3089556 doi: 10.1074/jbc.M110.211870
Kumar GA, Sarkar P, Jafurulla M, et al. Exploring endocytosis and intracellular trafficking of the human serotonin
pubmed: 30896156 doi: 10.1021/acs.biochem.9b00033
Kumar GA, Chattopadhyay A. Membrane cholesterol regulates endocytosis and trafficking of the serotonin
Subtil A, Gaidarov I, Kobylarz K, Lampson MA, Keen JH, McGraw TE. Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Natl Acad Sci U S A. 1999;96(12):6775–80.
pubmed: 10359788 pmcid: 21991 doi: 10.1073/pnas.96.12.6775
Rodal SK, Skretting G, Garred O, Vilhardt F, van Deurs B, Sandvig K. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell. 1999;10(4):961–74.
pubmed: 10198050 pmcid: 25220 doi: 10.1091/mbc.10.4.961
Brose N, Brunger A, Cafiso D, et al. Synaptic vesicle fusion: today and beyond. Nat Struct Mol Biol. 2019;26(8):663–8.
pubmed: 31384060 doi: 10.1038/s41594-019-0277-z
Sharma S, Lindau M. The fusion pore, 60 years after the first cartoon. FEBS Lett. 2018;592(21):3542–62.
pubmed: 29904915 pmcid: 6231997 doi: 10.1002/1873-3468.13160
Najafinobar N, Mellander LJ, Kurczy ME, et al. Cholesterol alters the dynamics of release in protein independent cell models for exocytosis. Sci Rep. 2016;6:33702.
pubmed: 27650365 pmcid: 5030643 doi: 10.1038/srep33702
Ammar MR, Kassas N, Chasserot-Golaz S, Bader MF, Vitale N. Lipids in regulated exocytosis: what are they doing? Front Endocrinol (Lausanne). 2013;4:125.
pubmed: 24062727 doi: 10.3389/fendo.2013.00125
Lang T. SNARE proteins and ‘membrane rafts’. J Physiol. 2007;585(Pt 3):693–8.
pubmed: 17478530 pmcid: 2375502 doi: 10.1113/jphysiol.2007.134346
Rand RP, Parsegian VA. Mimicry and mechanism in phospholipid models of membrane fusion. Annu Rev Physiol. 1986;48:201–12.
pubmed: 3518615 doi: 10.1146/annurev.ph.48.030186.001221
Jorgacevski J, Fosnaric M, Vardjan N, et al. Fusion pore stability of peptidergic vesicles. Mol Membr Biol. 2010;27(2-3):65–80.
pubmed: 20334578 doi: 10.3109/09687681003597104
Rogasevskaia T, Coorssen JR. Sphingomyelin-enriched microdomains define the efficiency of native Ca(2+)-triggered membrane fusion. J Cell Sci. 2006;119(Pt 13):2688–94.
pubmed: 16757517 doi: 10.1242/jcs.03007
Churchward MA, Coorssen JR. Cholesterol, regulated exocytosis and the physiological fusion machine. Biochem J. 2009;423(1):1–14.
pubmed: 19740078 doi: 10.1042/BJ20090969
Coorssen JR, Rand RP. Effects of cholesterol on the structural transitions induced by diacylglycerol in phosphatidylcholine and phosphatidylethanolamine bilayer systems. Biochem Cell Biol. 1990;68(1):65–9.
pubmed: 2350502 doi: 10.1139/o90-008
Churchward MA, Rogasevskaia T, Brandman DM, et al. Specific lipids supply critical negative spontaneous curvature--an essential component of native Ca2+-triggered membrane fusion. Biophys J. 2008;94(10):3976–86.
pubmed: 18227127 pmcid: 2367177 doi: 10.1529/biophysj.107.123984
Kreft M, Jorgačevski J, Stenovec M, Zorec R. Ångstrom-size exocytotic fusion pore: implications for pituitary hormone secretion. Mol Cell Endocrinol. 2018;463:65–71.
pubmed: 28457949 doi: 10.1016/j.mce.2017.04.023
Rituper B, Guček A, Lisjak M, et al. Vesicle cholesterol controls exocytotic fusion pore. Cell Calcium. 2022;101:102503.
pubmed: 34844123 doi: 10.1016/j.ceca.2021.102503
Zhang J, Xue R, Ong WY, Chen P. Roles of cholesterol in vesicle fusion and motion. Biophys J. 2009;97(5):1371–80.
pubmed: 19720025 pmcid: 2749761 doi: 10.1016/j.bpj.2009.06.025
Koseoglu S, Love SA, Haynes CL. Cholesterol effects on vesicle pools in chromaffin cells revealed by carbon-fiber microelectrode amperometry. Anal Bioanal Chem. 2011;400(9):2963–71.
pubmed: 21523329 doi: 10.1007/s00216-011-5002-7
Ge S, White JG, Haynes CL. Critical role of membrane cholesterol in exocytosis revealed by single platelet study. ACS Chem Biol. 2010;5(9):819–28.
pubmed: 20590163 pmcid: 2943021 doi: 10.1021/cb100130b
Xu X, London E. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry. 2000;39(5):843–9.
pubmed: 10653627 doi: 10.1021/bi992543v
Murari R, Murari MP, Baumann WJ. Sterol orientations in phosphatidylcholine liposomes as determined by deuterium NMR. Biochemistry. 1986;25(5):1062–7.
pubmed: 3754460 doi: 10.1021/bi00353a017
Demel RA, Bruckdorfer KR, van Deenen LL. The effect of sterol structure on the permeability of lipomes to glucose, glycerol and Rb
pubmed: 5011000 doi: 10.1016/0005-2736(72)90031-4
Róg T, Pasenkiewicz-Gierula M. Effects of epicholesterol on the phosphatidylcholine bilayer: a molecular simulation study. Biophys J. 2003;84(3):1818–26.
pubmed: 12609883 pmcid: 1302750 doi: 10.1016/S0006-3495(03)74989-3
Butler KW, Smith IC, Schneider H. Sterol structure and ordering effects in spin-labelled phospholipid multibilayer structures. Biochim Biophys Acta. 1970;219(2):514–7.
pubmed: 4322301 doi: 10.1016/0005-2736(70)90236-1
Long RA, Hruska F, Gesser HD, Hsia JC, Williams R. Membrane condensing effect of cholesterol and the role of its hydroxyl group. Biochem Biophys Res Commun. 1970;41(2):321–7.
pubmed: 4325669 doi: 10.1016/0006-291X(70)90506-1
Singh DK, Rosenhouse-Dantsker A, Nichols CG, Enkvetchakul D, Levitan I. Direct regulation of prokaryotic Kir channel by cholesterol. J Biol Chem. 2009;284(44):30727–36.
pubmed: 19740741 pmcid: 2781626 doi: 10.1074/jbc.M109.011221
Steinkühler J, Sezgin E, Urbančič I, Eggeling C, Dimova R. Mechanical properties of plasma membrane vesicles correlate with lipid order, viscosity and cell density. Commun Biol. 2019;2:337.
pubmed: 31531398 pmcid: 6744421 doi: 10.1038/s42003-019-0583-3
Petrov AM, Kasimov MR, Giniatullin AR, Tarakanova OI, Zefirov AL. The role of cholesterol in the exo- and endocytosis of synaptic vesicles in frog motor nerve endings. Neurosci Behav Physiol. 2010;40(8):894–901.
pubmed: 20680473 doi: 10.1007/s11055-010-9338-9
Lundbaek JA, Andersen OS. Spring constants for channel-induced lipid bilayer deformations. Estimates using gramicidin channels. Biophys J. 1999;76(2):889–95.
pubmed: 9929490 pmcid: 1300090 doi: 10.1016/S0006-3495(99)77252-8
Lundbaek JA, Birn P, Girshman J, Hansen AJ, Andersen OS. Membrane stiffness and channel function. Biochemistry. 1996;35(12):3825–30.
pubmed: 8620005 doi: 10.1021/bi952250b
Komor B, Komor E, Tanner W. Transformation of a strictly coupled active transport system into a facilitated diffusion system by nystatin. J Membr Biol. 1974;17(3):231–8.
pubmed: 4847760 doi: 10.1007/BF01870184
London Y, Demel RA, Geurts Van Kessel WSM, Zahler P, Van Deenen LLM. The interaction of the “Folch-Lees” protein with lipids at the air-water interface. Biochim Biophys Acta. 1974;332(1):69–84.
doi: 10.1016/0005-2736(74)90122-9
Giraud F, Claret M, Garay R. Interactions of cholesterol with the Na pump in red blood cells. Nature. 1976;264(5587):646–8.
pubmed: 1004606 doi: 10.1038/264646a0
Klappauf E, Schubert D. Band 3-protein from human erythrocyte membranes strongly interacts with cholesterol. FEBS Lett. 1977;80(2):423–5.
pubmed: 891995 doi: 10.1016/0014-5793(77)80490-0
Lange Y, Steck TL. Active membrane cholesterol as a physiological effector. Chem Phys Lipids. 2016;199:74–93.
pubmed: 26874289 doi: 10.1016/j.chemphyslip.2016.02.003
Yeagle PL. Incorporation of the human erythrocyte sialoglycoprotein into recombined membranes containing cholesterol. J Membr Biol. 1984;78(3):201–10.
pubmed: 6726789 doi: 10.1007/BF01925968
Asano K, Asano A. Binding of cholesterol and inhibitory peptide derivatives with the fusogenic hydrophobic sequence of F-glycoprotein of HVJ (Sendai virus): possible implication in the fusion reaction. Biochemistry. 1988;27(4):1321–9.
pubmed: 2835090 doi: 10.1021/bi00404a035
Albert AD, Young JE, Yeagle PL. Rhodopsin-cholesterol interactions in bovine rod outer segment disk membranes. Biochim Biophys Acta. 1996;1285(1):47–55.
pubmed: 8948474 doi: 10.1016/S0005-2736(96)00145-9
Scanlon SM, Williams DC, Schloss P. Membrane cholesterol modulates serotonin transporter activity. Biochemistry. 2001;40(35):10507–13.
pubmed: 11523992 doi: 10.1021/bi010730z
Brown AJ, Sun L, Feramisco JD, Brown MS, Goldstein JL. Cholesterol addition to ER membranes alters conformation of SCAP, the SREBP escort protein that regulates cholesterol metabolism. Mol Cell. 2002;10(2):237–45.
pubmed: 12191470 doi: 10.1016/S1097-2765(02)00591-9
Garrigues A, Escargueil AE, Orlowski S. The multidrug transporter, P-glycoprotein, actively mediates cholesterol redistribution in the cell membrane. Proc Natl Acad Sci U S A. 2002;99(16):10347–52.
pubmed: 12145328 pmcid: 124917 doi: 10.1073/pnas.162366399
Rosenhouse-Dantsker A. Insights into the molecular requirements for cholesterol binding to ion channels. Curr Top Membr. 2017;80:187–208.
pubmed: 28863816 doi: 10.1016/bs.ctm.2017.05.003
Li H, Papadopoulos V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology. 1998;139(12):4991–7.
pubmed: 9832438 doi: 10.1210/endo.139.12.6390
Epand RM. Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res. 2006;45(4):279–94.
pubmed: 16574236 doi: 10.1016/j.plipres.2006.02.001
Jafurulla M, Tiwari S, Chattopadhyay A. Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochem Biophys Res Commun. 2011;404(1):569–73.
pubmed: 21146498 doi: 10.1016/j.bbrc.2010.12.031
Sengupta D, Chattopadhyay A. Identification of cholesterol binding sites in the serotonin1A receptor. J Phys Chem B. 2012;116(43):12991–6.
pubmed: 23067252 doi: 10.1021/jp309888u
Oddi S, Dainese E, Fezza F, et al. Functional characterization of putative cholesterol binding sequence (CRAC) in human type-1 cannabinoid receptor. J Neurochem. 2011;116(5):858–65.
pubmed: 21214565 doi: 10.1111/j.1471-4159.2010.07041.x
Singh AK, McMillan J, Bukiya AN, Burton B, Parrill AL, Dopico AM. Multiple cholesterol recognition/interaction amino acid consensus (CRAC) motifs in cytosolic C tail of Slo1 subunit determine cholesterol sensitivity of Ca2+- and voltage-gated K+ (BK) channels. J Biol Chem. 2012;287(24):20509–21.
pubmed: 22474334 pmcid: 3370236 doi: 10.1074/jbc.M112.356261
Fantini J, Barrantes FJ. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol. 2013;4:31.
pubmed: 23450735 pmcid: 3584320 doi: 10.3389/fphys.2013.00031
Picazo-Juárez G, Romero-Suárez S, Nieto-Posadas A, et al. Identification of a binding motif in the S5 helix that confers cholesterol sensitivity to the TRPV1 ion channel. J Biol Chem. 2011;286(28):24966–76.
pubmed: 21555515 pmcid: 3137070 doi: 10.1074/jbc.M111.237537
Rosenhouse-Dantsker A, Noskov S, Durdagi S, Logothetis DE, Levitan I. Identification of novel cholesterol-binding regions in Kir2 channels. J Biol Chem. 2013;288(43):31154–64.
pubmed: 24019518 pmcid: 3829427 doi: 10.1074/jbc.M113.496117
Yi BA, Lin YF, Jan YN, Jan LY. Yeast screen for constitutively active mutant G protein-activated potassium channels. Neuron. 2001;29(3):657–67.
pubmed: 11301025 doi: 10.1016/S0896-6273(01)00241-0
Bukiya AN, Durdagi S, Noskov S, Rosenhouse-Dantsker A. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus. J Biol Chem. 2017;292(15):6135–47.
pubmed: 28213520 pmcid: 5391746 doi: 10.1074/jbc.M116.753350
Lascombe MB, Ponchet M, Venard P, Milat ML, Blein JP, Prangé T. The 1.45 A resolution structure of the cryptogein-cholesterol complex: a close-up view of a sterol carrier protein (SCP) active site. Acta Crystallogr D Biol Crystallogr. 2002;58(Pt 9):1442–7.
pubmed: 12198300 doi: 10.1107/S0907444902011745
Kallen J, Schlaeppi JM, Bitsch F, Delhon I, Fournier B. Crystal structure of the human RORalpha Ligand binding domain in complex with cholesterol sulfate at 2.2 A. J Biol Chem. 2004;279(14):14033–8.
pubmed: 14722075 doi: 10.1074/jbc.M400302200
Cherezov V, Rosenbaum DM, Hanson MA, et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science. 2007;318(5854):1258–65.
pubmed: 17962520 pmcid: 2583103 doi: 10.1126/science.1150577
Hanson MA, Cherezov V, Griffith MT, et al. A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure. 2008;16(6):897–905.
pubmed: 18547522 pmcid: 2601552 doi: 10.1016/j.str.2008.05.001
Khelashvili G, Grossfield A, Feller SE, Pitman MC, Weinstein H. Structural and dynamic effects of cholesterol at preferred sites of interaction with rhodopsin identified from microsecond length molecular dynamics simulations. Proteins. 2009;76(2):403–17.
pubmed: 19173312 pmcid: 4101808 doi: 10.1002/prot.22355
Wang C, Ralko A, Ren Z, Rosenhouse-Dantsker A, Yang X. Modes of cholesterol binding in membrane proteins: a joint analysis of 73 crystal structures. Adv Exp Med Biol. 2019;1135:67–86.
pubmed: 31098811 doi: 10.1007/978-3-030-14265-0_4
Yeagle PL. Non-covalent binding of membrane lipids to membrane proteins. Biochim Biophys Acta. 2014;1838(6):1548–59.
pubmed: 24269542 doi: 10.1016/j.bbamem.2013.11.009
Wada T, Shimono K, Kikukawa T, et al. Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, Acetabularia rhodopsin II, from marine alga. J Mol Biol. 2011;411(5):986–98.
pubmed: 21726566 doi: 10.1016/j.jmb.2011.06.028
Manglik A, Kruse AC, Kobilka TS, et al. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature. 2012;485(7398):321–6.
pubmed: 22437502 pmcid: 3523197 doi: 10.1038/nature10954
Liu W, Chun E, Thompson AA, et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science. 2012;337(6091):232–6.
pubmed: 22798613 pmcid: 3399762 doi: 10.1126/science.1219218
Penmatsa A, Wang KH, Gouaux E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature. 2013;503(7474):85–90.
pubmed: 24037379 pmcid: 3904663 doi: 10.1038/nature12533
Wacker D, Wang C, Katritch V, et al. Structural features for functional selectivity at serotonin receptors. Science. 2013;340(6132):615–9.
pubmed: 23519215 pmcid: 3644390 doi: 10.1126/science.1232808
Chien EY, Liu W, Zhao Q, et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science. 2010;330(6007):1091–5.
pubmed: 21097933 pmcid: 3058422 doi: 10.1126/science.1197410
Shimamura T, Shiroishi M, Weyand S, et al. Structure of the human histamine H1 receptor complex with doxepin. Nature. 2011;475(7354):65–70.
pubmed: 21697825 pmcid: 3131495 doi: 10.1038/nature10236
Gimpl G. Interaction of G protein coupled receptors and cholesterol. Chem Phys Lipids. 2016;199:61–73.
pubmed: 27108066 doi: 10.1016/j.chemphyslip.2016.04.006
Muth S, Fries A, Gimpl G. Cholesterol-induced conformational changes in the oxytocin receptor. Biochem J. 2011;437(3):541–53.
pubmed: 21561435 doi: 10.1042/BJ20101795
Casiraghi M, Damian M, Lescop E, et al. Functional modulation of a G protein-coupled receptor conformational landscape in a lipid bilayer. J Am Chem Soc. 2016;138(35):11170–5.
pubmed: 27489943 doi: 10.1021/jacs.6b04432
Xiang Y, Rybin VO, Steinberg SF, Kobilka B. Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes. J Biol Chem. 2002;277(37):34280–6.
pubmed: 12097322 doi: 10.1074/jbc.M201644200
Pontier SM, Percherancier Y, Galandrin S, Breit A, Galés C, Bouvier M. Cholesterol-dependent separation of the beta2-adrenergic receptor from its partners determines signaling efficacy: insight into nanoscale organization of signal transduction. J Biol Chem. 2008;283(36):24659–72.
pubmed: 18566454 pmcid: 3259828 doi: 10.1074/jbc.M800778200
Paila YD, Jindal E, Goswami SK, Chattopadhyay A. Cholesterol depletion enhances adrenergic signaling in cardiac myocytes. Biochim Biophys Acta. 2011;1808(1):461–5.
pubmed: 20851100 doi: 10.1016/j.bbamem.2010.09.006
Pucadyil TJ, Chattopadhyay A. Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res. 2006;45(4):295–333.
pubmed: 16616960 doi: 10.1016/j.plipres.2006.02.002
Jafurulla M, Rao BD, Sreedevi S, Ruysschaert JM, Covey DF, Chattopadhyay A. Stereospecific requirement of cholesterol in the function of the serotonin1A receptor. Biochim Biophys Acta. 2014;1838(1 Pt B):158–63.
pubmed: 24008092 doi: 10.1016/j.bbamem.2013.08.015
Mitchell DC, Niu SL, Litman BJ. Optimization of receptor-G protein coupling by bilayer lipid composition I: kinetics of rhodopsin-transducin binding. J Biol Chem. 2001;276(46):42801–6.
pubmed: 11544258 doi: 10.1074/jbc.M105772200
Oates J, Watts A. Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr Opin Struct Biol. 2011;21(6):802–7.
pubmed: 22036833 doi: 10.1016/j.sbi.2011.09.007
Yao Z, Kobilka B. Using synthetic lipids to stabilize purified beta2 adrenoceptor in detergent micelles. Anal Biochem. 2005;343(2):344–6.
pubmed: 16005425 doi: 10.1016/j.ab.2005.05.002
Liu W, Hanson MA, Stevens RC, Cherezov V. LCP-Tm: an assay to measure and understand stability of membrane proteins in a membrane environment. Biophys J. 2010;98(8):1539–48.
pubmed: 20409473 pmcid: 2856142 doi: 10.1016/j.bpj.2009.12.4296
Saxena R, Chattopadhyay A. Membrane cholesterol stabilizes the human serotonin(1A) receptor. Biochim Biophys Acta. 2012;1818(12):2936–42.
pubmed: 22892071 doi: 10.1016/j.bbamem.2012.07.032
Gimpl G, Fahrenholz F. Cholesterol as stabilizer of the oxytocin receptor. Biochim Biophys Acta. 2002;1564(2):384–92.
pubmed: 12175921 doi: 10.1016/S0005-2736(02)00475-3
Manna M, Niemelä M, Tynkkynen J, et al. Mechanism of allosteric regulation of β
pubmed: 27897972 pmcid: 5182060 doi: 10.7554/eLife.18432
Ounjian J, Bukiya AN, Rosenhouse-Dantsker A. Molecular determinants of cholesterol binding to soluble and transmembrane protein domains. Adv Exp Med Biol. 2019;1135:47–66.
pubmed: 31098810 doi: 10.1007/978-3-030-14265-0_3
Chua NK, Howe V, Jatana N, Thukral L, Brown AJ. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis. J Biol Chem. 2017;292(49):19959–73.
pubmed: 28972164 pmcid: 5723984 doi: 10.1074/jbc.M117.794230
Motamed M, Zhang Y, Wang ML, et al. Identification of luminal Loop 1 of Scap protein as the sterol sensor that maintains cholesterol homeostasis. J Biol Chem. 2011;286(20):18002–12.
pubmed: 21454655 pmcid: 3093874 doi: 10.1074/jbc.M111.238311
Song Y, Hustedt EJ, Brandon S, Sanders CR. Competition between homodimerization and cholesterol binding to the C99 domain of the amyloid precursor protein. Biochemistry. 2013;52(30):5051–64.
pubmed: 23865807 doi: 10.1021/bi400735x
Taylor NMI, Manolaridis I, Jackson SM, Kowal J, Stahlberg H, Locher KP. Structure of the human multidrug transporter ABCG2. Nature. 2017;546(7659):504–9.
pubmed: 28554189 doi: 10.1038/nature22345
Romanenko VG, Fang Y, Byfield F, et al. Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels. Biophys J. 2004;87(6):3850–61.
pubmed: 15465867 pmcid: 1304896 doi: 10.1529/biophysj.104.043273
Deng W, Bukiya AN, Rodríguez-Menchaca AA, et al. Hypercholesterolemia induces up-regulation of KACh cardiac currents via a mechanism independent of phosphatidylinositol 4,5-bisphosphate and Gβγ. J Biol Chem. 2012;287(7):4925–35.
pubmed: 22174416 doi: 10.1074/jbc.M111.306134
Rosenhouse-Dantsker A, Leal-Pinto E, Logothetis DE, Levitan I. Comparative analysis of cholesterol sensitivity of Kir channels: role of the CD loop. Channels (Austin). 2010;4(1):63–6.
pubmed: 19923917 pmcid: 2907253 doi: 10.4161/chan.4.1.10366
Chan KW, Sui JL, Vivaudou M, Logothetis DE. Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit. Proc Natl Acad Sci U S A. 1996;93(24):14193–8.
pubmed: 8943083 pmcid: 19516 doi: 10.1073/pnas.93.24.14193
Vivaudou M, Chan KW, Sui JL, Jan LY, Reuveny E, Logothetis DE. Probing the G-protein regulation of GIRK1 and GIRK4, the two subunits of the KACh channel, using functional homomeric mutants. J Biol Chem. 1997;272(50):31553–60.
pubmed: 9395492 doi: 10.1074/jbc.272.50.31553
Rosenhouse-Dantsker A. Cholesterol binding sites in inwardly rectifying potassium channels. Adv Exp Med Biol. 2019;1135:119–38.
pubmed: 31098814 doi: 10.1007/978-3-030-14265-0_7
Bukiya AN, Rosenhouse-Dantsker A. Synergistic activation of G protein-gated inwardly rectifying potassium channels by cholesterol and PI(4,5)P
pubmed: 28377218 doi: 10.1016/j.bbamem.2017.03.023
Logothetis DE, Jin T, Lupyan D, Rosenhouse-Dantsker A. Phosphoinositide-mediated gating of inwardly rectifying K(+) channels. Pflugers Arch. 2007;455(1):83–95.
pubmed: 17520276 doi: 10.1007/s00424-007-0276-5
Logothetis DE, Lupyan D, Rosenhouse-Dantsker A. Diverse Kir modulators act in close proximity to residues implicated in phosphoinositide binding. J Physiol. 2007;582(Pt 3):953–65.
pubmed: 17495041 pmcid: 2075264 doi: 10.1113/jphysiol.2007.133157
Rosenhouse-Dantsker A, Logothetis DE. Molecular characteristics of phosphoinositide binding. Pflugers Arch. 2007;455(1):45–53.
pubmed: 17588168 doi: 10.1007/s00424-007-0291-6
Suh BC, Hille B. PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys. 2008;37:175–95.
pubmed: 18573078 pmcid: 2692585 doi: 10.1146/annurev.biophys.37.032807.125859
Corradi V, Bukiya AN, Miranda WE, et al. A molecular switch controls the impact of cholesterol on a Kir channel. Proc Natl Acad Sci U S A. 2022;119(13):e2109431119.
pubmed: 35333652 pmcid: 9060494 doi: 10.1073/pnas.2109431119
Shinoda T, Ogawa H, Cornelius F, Toyoshima C. Crystal structure of the sodium-potassium pump at 2.4 A resolution. Nature. 2009;459(7245):446–50.
pubmed: 19458722 doi: 10.1038/nature07939
Infante RE, Abi-Mosleh L, Radhakrishnan A, Dale JD, Brown MS, Goldstein JL. Purified NPC1 protein. I. Binding of cholesterol and oxysterols to a 1278-amino acid membrane protein. J Biol Chem. 2008;283(2):1052–63.
pubmed: 17989073 doi: 10.1074/jbc.M707943200
Winkler MBL, Kidmose RT, Szomek M, et al. Structural insight into eukaryotic sterol transport through niemann-pick type C proteins. Cell. 2019;179(2):485–497.e18.
pubmed: 31543266 doi: 10.1016/j.cell.2019.08.038
Li X, Wang J, Coutavas E, Shi H, Hao Q, Blobel G. Structure of human Niemann-Pick C1 protein. Proc Natl Acad Sci U S A. 2016;113(29):8212–7.
pubmed: 27307437 pmcid: 4961162 doi: 10.1073/pnas.1607795113
Watari H, Blanchette-Mackie EJ, Dwyer NK, et al. Mutations in the leucine zipper motif and sterol-sensing domain inactivate the Niemann-Pick C1 glycoprotein. J Biol Chem. 1999;274(31):21861–6.
pubmed: 10419504 doi: 10.1074/jbc.274.31.21861
Ohgami N, Ko DC, Thomas M, Scott MP, Chang CC, Chang TY. Binding between the Niemann-Pick C1 protein and a photoactivatable cholesterol analog requires a functional sterol-sensing domain. Proc Natl Acad Sci U S A. 2004;101(34):12473–8.
pubmed: 15314240 pmcid: 514655 doi: 10.1073/pnas.0405255101
Ohgane K, Karaki F, Dodo K, Hashimoto Y. Discovery of oxysterol-derived pharmacological chaperones for NPC1: implication for the existence of second sterol-binding site. Chem Biol. 2013;20(3):391–402.
pubmed: 23521797 doi: 10.1016/j.chembiol.2013.02.009
Elghobashi-Meinhardt N. Computational tools unravel putative sterol binding sites in the lysosomal NPC1 protein. J Chem Inf Model. 2019;59(5):2432–41.
pubmed: 30942586 doi: 10.1021/acs.jcim.9b00186
Elghobashi-Meinhardt N. Cholesterol transport in wild-type NPC1 and P691S: molecular dynamics simulations reveal changes in dynamical behavior. Int J Mol Sci. 2020;21(8):2962.
pubmed: 32331453 pmcid: 7215871 doi: 10.3390/ijms21082962
Sandhu J, Li S, Fairall L, et al. Aster proteins facilitate nonvesicular plasma membrane to ER cholesterol transport in mammalian cells. Cell. 2018;175(2):514–529.e20.
pubmed: 30220461 pmcid: 6469685 doi: 10.1016/j.cell.2018.08.033
Giguère V. To ERR in the estrogen pathway. Trends Endocrinol Metab. 2002;13(5):220–5.
pubmed: 12185669 doi: 10.1016/S1043-2760(02)00592-1
Giguère V, Yang N, Segui P, Evans RM. Identification of a new class of steroid hormone receptors. Nature. 1988;331(6151):91–4.
pubmed: 3267207 doi: 10.1038/331091a0
Luo J, Sladek R, Carrier J, Bader JA, Richard D, Giguère V. Reduced fat mass in mice lacking orphan nuclear receptor estrogen-related receptor alpha. Mol Cell Biol. 2003;23(22):7947–56.
pubmed: 14585956 pmcid: 262360 doi: 10.1128/MCB.23.22.7947-7956.2003
Gallet M, Vanacker JM. ERR receptors as potential targets in osteoporosis. Trends Endocrinol Metab. 2010;21(10):637–41.
pubmed: 20674386 doi: 10.1016/j.tem.2010.06.008
Wei W, Wang X, Yang M, et al. PGC1beta mediates PPARgamma activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab. 2010;11(6):503–16.
pubmed: 20519122 pmcid: 3521515 doi: 10.1016/j.cmet.2010.04.015
Wan Y. PPARγ in bone homeostasis. Trends Endocrinol Metab. 2010;21(12):722–8.
pubmed: 20863714 doi: 10.1016/j.tem.2010.08.006
Stein RA, McDonnell DP. Estrogen-related receptor alpha as a therapeutic target in cancer. Endocr Relat Cancer. 2006;13(Suppl 1):S25–32.
pubmed: 17259555 doi: 10.1677/erc.1.01292
Suzuki T, Miki Y, Moriya T, et al. Estrogen-related receptor alpha in human breast carcinoma as a potent prognostic factor. Cancer Res. 2004;64(13):4670–6.
pubmed: 15231680 doi: 10.1158/0008-5472.CAN-04-0250
Xu Z, Ma T, Zhou J, et al. Nuclear receptor ERRα contributes to castration-resistant growth of prostate cancer via its regulation of intratumoral androgen biosynthesis. Theranostics. 2020;10(9):4201–16.
pubmed: 32226548 pmcid: 7086365 doi: 10.7150/thno.35589
Ghanbari F, Mader S, Philip A. Cholesterol as an endogenous ligand of ERRα promotes ERRα-mediated cellular proliferation and metabolic target gene expression in breast cancer cells. Cells. 2020;9(8):1765.
pubmed: 32717915 pmcid: 7463712 doi: 10.3390/cells9081765
Patch RJ, Searle LL, Kim AJ, et al. Identification of diaryl ether-based ligands for estrogen-related receptor α as potential antidiabetic agents. J Med Chem. 2011;54(3):788–808.
pubmed: 21218783 doi: 10.1021/jm101063h
Sladek R, Bader JA, Giguère V. The orphan nuclear receptor estrogen-related receptor alpha is a transcriptional regulator of the human medium-chain acyl coenzyme A dehydrogenase gene. Mol Cell Biol. 1997;17(9):5400–9.
pubmed: 9271417 pmcid: 232390 doi: 10.1128/MCB.17.9.5400
Kallen J, Schlaeppi JM, Bitsch F, et al. Evidence for ligand-independent transcriptional activation of the human estrogen-related receptor alpha (ERRalpha): crystal structure of ERRalpha ligand binding domain in complex with peroxisome proliferator-activated receptor coactivator-1alpha. J Biol Chem. 2004;279(47):49330–7.
pubmed: 15337744 doi: 10.1074/jbc.M407999200
Wei W, Schwaid AG, Wang X, et al. Ligand activation of ERRα by cholesterol mediates statin and bisphosphonate effects. Cell Metab. 2016;23(3):479–91.
pubmed: 26777690 pmcid: 4785078 doi: 10.1016/j.cmet.2015.12.010
Li D, Cai Y, Teng D, Li W, Tang Y, Liu G. Computational insights into the interaction mechanisms of estrogen-related receptor alpha with endogenous ligand cholesterol. Chem Biol Drug Des. 2019;94(1):1316–29.
pubmed: 30811808 doi: 10.1111/cbdd.13506
Tarakida A, Iino K, Abe K, et al. Hypercholesterolemia accelerates bone loss in postmenopausal women. Climacteric. 2011;14(1):105–11.
pubmed: 20839957 doi: 10.3109/13697137.2010.507888
Orozco P. Atherogenic lipid profile and elevated lipoprotein (a) are associated with lower bone mineral density in early postmenopausal overweight women. Eur J Epidemiol. 2004;19(12):1105–12.
pubmed: 15678790 doi: 10.1007/s10654-004-1706-8
Walsh JS, Newman C, Eastell R. Heart drugs that affect bone. Trends Endocrinol Metab. 2012;23(4):163–8.
pubmed: 22136934 doi: 10.1016/j.tem.2011.10.002
Ghanbari F, Fortier AM, Park M, Philip A. Cholesterol-induced metabolic reprogramming in breast cancer cells is mediated via the ERRα pathway. Cancers (Basel). 2021;13(11):2605.
pubmed: 34073320 pmcid: 8198778 doi: 10.3390/cancers13112605
Brindisi M, Fiorillo M, Frattaruolo L, Sotgia F, Lisanti MP, Cappello AR. Cholesterol and mevalonate: two metabolites involved in breast cancer progression and drug resistance through the ERRα pathway. Cells. 2020;9(8):1819.
pubmed: 32751976 pmcid: 7465765 doi: 10.3390/cells9081819
Kaushal JB, Batra SK, Rachagani S. Hedgehog signaling and its molecular perspective with cholesterol: a comprehensive review. Cell Mol Life Sci. 2022;79(5):266.
pubmed: 35486193 doi: 10.1007/s00018-022-04233-1
Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15(23):3059–87.
pubmed: 11731473 doi: 10.1101/gad.938601
Jia J, Jiang J. Decoding the Hedgehog signal in animal development. Cell Mol Life Sci. 2006;63(11):1249–65.
pubmed: 16596340 doi: 10.1007/s00018-005-5519-z
Pyczek J, Buslei R, Schult D, et al. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland. Sci Rep. 2016;6:24928.
pubmed: 27109116 pmcid: 4842994 doi: 10.1038/srep24928
Petrova R, Joyner AL. Roles for hedgehog signaling in adult organ homeostasis and repair. Development. 2014;141(18):3445–57.
pubmed: 25183867 pmcid: 4197719 doi: 10.1242/dev.083691
Byrne EFX, Sircar R, Miller PS, et al. Structural basis of Smoothened regulation by its extracellular domains. Nature. 2016;535(7613):517–22.
pubmed: 27437577 pmcid: 4970916 doi: 10.1038/nature18934
Cooper MK, Wassif CA, Krakowiak PA, et al. A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis [published correction appears in Nat Genet. 2003 May;34(1):113]. Nat Genet. 2003;33(4):508–13.
pubmed: 12652302 doi: 10.1038/ng1134
Huang P, Nedelcu D, Watanabe M, et al. Cellular cholesterol directly activates Smoothened in Hedgehog signaling. Cell, 2016;166(5):1176–1187.e14.
Huang P, Zheng S, Wierbowski BM, et al. Structural basis of Smoothened activation in Hedgehog signaling. Cell. 2018;174(2):312–324.e16.
pubmed: 29804838 pmcid: 6046275 doi: 10.1016/j.cell.2018.04.029
Luchetti G, Sircar R, Kong JH, et al. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling. Elife. 2016;5:e20304.
pubmed: 27705744 pmcid: 5123864 doi: 10.7554/eLife.20304
Myers BR, Neahring L, Zhang Y, Roberts KJ, Beachy PA. Rapid, direct activity assays for Smoothened reveal Hedgehog pathway regulation by membrane cholesterol and extracellular sodium. Proc Natl Acad Sci U S A. 2017;114(52):E11141–50.
pubmed: 29229834 pmcid: 5748227 doi: 10.1073/pnas.1717891115
Xiao X, Tang JJ, Peng C, et al. Cholesterol modification of Smoothened is required for Hedgehog signaling. Mol Cell. 2017;66(1):154–162.e10.
pubmed: 28344083 doi: 10.1016/j.molcel.2017.02.015
Qi X, Schmiege P, Coutavas E, Wang J, Li X. Structures of human Patched and its complex with native palmitoylated sonic hedgehog. Nature. 2018;560(7716):128–32.
pubmed: 29995851 pmcid: 6341490 doi: 10.1038/s41586-018-0308-7
Rosenhouse-Dantsker A, Slayden A, Bukiya AN. Approaches for modifying cellular cholesterol levels and their application to mechanistic studies: examples from the ion channel field (Chapter 13). In: Bukiya AN, Dopico AM, editors. Cholesterol: from chemistry and biophysics to the clinic. Academic; 2022. p. 289–340.
doi: 10.1016/B978-0-323-85857-1.00002-X
Levitan I, Christian AE, Tulenko TN, Rothblat GH. Membrane cholesterol content modulates activation of volume-regulated anion current in bovine endothelial cells. J Gen Physiol. 2000;115(4):405–16.
pubmed: 10736308 pmcid: 2233759 doi: 10.1085/jgp.115.4.405
Grimmer S, van Deurs B, Sandvig K. Membrane ruffling and macropinocytosis in A431 cells require cholesterol. J Cell Sci. 2002;115(Pt 14):2953–62.
pubmed: 12082155 doi: 10.1242/jcs.115.14.2953
Romanenko VG, Rothblat GH, Levitan I. Sensitivity of volume-regulated anion current to cholesterol structural analogues. J Gen Physiol. 2004;123(1):77–87.
pubmed: 14699079 pmcid: 2217410 doi: 10.1085/jgp.200308882
Breusegem SY, Halaihel N, Inoue M, et al. Acute and chronic changes in cholesterol modulate Na-Pi cotransport activity in OK cells. Am J Physiol Renal Physiol. 2005;289(1):F154–65.
pubmed: 15769937 doi: 10.1152/ajprenal.00331.2004
Slayden A, North K, Bisen S, Dopico AM, Bukiya AN, Rosenhouse-Dantsker A. Enrichment of mammalian tissues and xenopus oocytes with cholesterol. J Vis Exp. 2020;157:10.3791/60734.
Fülöp T Jr, Douziech N, Goulet AC, et al. Cyclodextrin modulation of T lymphocyte signal transduction with aging. Mech Ageing Dev. 2001;122(13):1413–30.
pubmed: 11470130 doi: 10.1016/S0047-6374(01)00274-3
Keller P, Simons K. Cholesterol is required for surface transport of influenza virus hemagglutinin. J Cell Biol. 1998;140(6):1357–67.
pubmed: 9508769 pmcid: 2132660 doi: 10.1083/jcb.140.6.1357
Dreja K, Voldstedlund M, Vinten J, Tranum-Jensen J, Hellstrand P, Swärd K. Cholesterol depletion disrupts caveolae and differentially impairs agonist-induced arterial contraction. Arterioscler Thromb Vasc Biol. 2002;22(8):1267–72.
pubmed: 12171786 doi: 10.1161/01.ATV.0000023438.32585.A1
Matthews V, Schuster B, Schütze S, et al. Cellular cholesterol depletion triggers shedding of the human interleukin-6 receptor by ADAM10 and ADAM17 (TACE). J Biol Chem. 2003;278(40):38829–39.
pubmed: 12832423 doi: 10.1074/jbc.M210584200
Bisen S, Seleverstov O, Belani J, Rychnovsky S, Dopico AM, Bukiya AN. Distinct mechanisms underlying cholesterol protection against alcohol-induced BK channel inhibition and resulting vasoconstriction. Biochim Biophys Acta. 2016;1861(11):1756–66.
pubmed: 27565113 pmcid: 5274633 doi: 10.1016/j.bbalip.2016.08.013
Carattino MD, Liu W, Hill WG, Satlin LM, Kleyman TR. Lack of a role of membrane-protein interactions in flow-dependent activation of ENaC. Am J Physiol Renal Physiol. 2007;293(1):F316–24.
pubmed: 17459954 doi: 10.1152/ajprenal.00455.2006
Sadler SE, Jacobs ND. Stimulation of Xenopus laevis oocyte maturation by methyl-beta-cyclodextrin. Biol Reprod. 2004;70(6):1685–92.
pubmed: 14766724 doi: 10.1095/biolreprod.103.026161
Santiago J, Guzmàn GR, Rojas LV, et al. Probing the effects of membrane cholesterol in the Torpedo californica acetylcholine receptor and the novel lipid-exposed mutation alpha C418W in Xenopus oocytes. J Biol Chem. 2001;276(49):46523–32.
pubmed: 11567020 doi: 10.1074/jbc.M104563200
Báez-Pagán CA, Del Hoyo-Rivera N, Quesada O, Otero-Cruz JD, Lasalde-Dominicci JA. Heterogeneous inhibition in macroscopic current responses of four nicotinic acetylcholine receptor subtypes by cholesterol enrichment. J Membr Biol. 2016;249(4):539–49.
pubmed: 27116687 pmcid: 4945412 doi: 10.1007/s00232-016-9896-z
Howell WH, McNamara DJ, Tosca MA, Smith BT, Gaines JA. Plasma lipid and lipoprotein responses to dietary fat and cholesterol: a meta-analysis. Am J Clin Nutr. 1997;65(6):1747–64.
pubmed: 9174470 doi: 10.1093/ajcn/65.6.1747
Asemi Z, Tabassi Z, Samimi M, Fahiminejad T, Esmaillzadeh A. Favourable effects of the Dietary Approaches to Stop Hypertension diet on glucose tolerance and lipid profiles in gestational diabetes: a randomised clinical trial. Br J Nutr. 2013;109(11):2024–30.
pubmed: 23148885 doi: 10.1017/S0007114512004242
Taha DA, Wasan EK, Wasan KM, Gershkovich P. Lipid-lowering activity of natural and semi-synthetic sterols and stanols. J Pharm Pharm Sci. 2015;18(4):344–67.
pubmed: 26626241 doi: 10.18433/J3GC84
Fidalgo Rodríguez JL, Dynarowicz-Latka P, Miñones CJ. How unsaturated fatty acids and plant stanols affect sterols plasma level and cellular membranes? Review on model studies involving the Langmuir monolayer technique. Chem Phys Lipids. 2020;232:104968.
pubmed: 32896519 doi: 10.1016/j.chemphyslip.2020.104968
Bukiya AN, Rosenhouse-Dantsker A. Hypercholesterolemia effect on potassium channels. In: Kumar SA, editor. Hypercholesterolemia. Intech; 2015. p. 95–119.
Ikeda I, Tanaka K, Sugano M, Vahouny GV, Gallo LL. Inhibition of cholesterol absorption in rats by plant sterols. J Lipid Res. 1988;29(12):1573–82.
pubmed: 2468730 doi: 10.1016/S0022-2275(20)38403-0
Pecoraro V, Moja L, Dall’Olmo L, Cappellini G, Garattini S. Most appropriate animal models to study the efficacy of statins: a systematic review. Eur J Clin Invest. 2014;44(9):848–71.
pubmed: 25066257 doi: 10.1111/eci.12304
Xie C, Zhou ZS, Li N, et al. Ezetimibe blocks the internalization of NPC1L1 and cholesterol in mouse small intestine. J Lipid Res. 2012;53(10):2092–101.
pubmed: 22811412 pmcid: 3435542 doi: 10.1194/jlr.M027359
Gälman C, Matasconi M, Persson L, Parini P, Angelin B, Rudling M. Age-induced hypercholesterolemia in the rat relates to reduced elimination but not increased intestinal absorption of cholesterol. Am J Physiol Endocrinol Metab. 2007;293(3):E737–42.
pubmed: 17578886 doi: 10.1152/ajpendo.00166.2007
de Boer JF, Schonewille M, Boesjes M, et al. Intestinal farnesoid X receptor controls transintestinal cholesterol excretion in mice. Gastroenterology. 2017;152(5):1126–1138.e6.
pubmed: 28065787 doi: 10.1053/j.gastro.2016.12.037
Wang M, Guo H, Wang S, et al. The measurement of high-density lipoprotein mediated cholesterol efflux from macrophage cells by liquid chromatography tandem mass spectrometry. Cell Physiol Biochem. 2014;34(6):1901–11.
pubmed: 25503882 doi: 10.1159/000366388
Beher WT, Beher ME, Rao B. Bile acid and cholesterol metabolism in the mouse as affected by cholestyramine. Proc Soc Exp Biol Med. 1966;122(3):881–4.
pubmed: 5918968 doi: 10.3181/00379727-122-31278
Phillips WA, Ratchford JM, Schultz JR. Effects of colestipol hydrochloride on drug absorption in the rat II. J Pharm Sci. 1976;65(9):1285–91.
pubmed: 966139 doi: 10.1002/jps.2600650907
Takahashi M, Sarwal AN, Raicht RF, Cohen BI. Effect of colestipol on sterol metabolism in the rat. Lipids. 1980;15(6):434–8.
pubmed: 7401941 doi: 10.1007/BF02534068
Fruchart JC, Staels B, Duriez P. The role of fibric acids in atherosclerosis. Curr Atheroscler Rep. 2001;3(1):83–92.
pubmed: 11123853 doi: 10.1007/s11883-001-0015-x
Valasek MA, Clarke SL, Repa JJ. Fenofibrate reduces intestinal cholesterol absorption via PPARalpha-dependent modulation of NPC1L1 expression in mouse. J Lipid Res. 2007;48(12):2725–35.
pubmed: 17726195 doi: 10.1194/jlr.M700345-JLR200
Ling H, Luoma JT, Hilleman D. A review of currently available fenofibrate and fenofibric acid formulations. Cardiol Res. 2013;4(2):47–55.
pubmed: 28352420 pmcid: 5358213
Wang YH, Bucki R, Janmey PA. Cholesterol-dependent phase-demixing in lipid bilayers as a switch for the activity of the phosphoinositide-binding cytoskeletal protein gelsolin. Biochemistry. 2016;55(24):3361–9.
pubmed: 27224309 doi: 10.1021/acs.biochem.5b01363
Rosenhouse-Dantsker A, Epshtein Y, Levitan I. Interplay between lipid modulators of Kir2 channels: cholesterol and PIP2. Comput Struct Biotechnol J. 2014;11(19):131–7.
pubmed: 25408847 pmcid: 4232564 doi: 10.1016/j.csbj.2014.09.007
Rosenhouse-Dantsker A, Noskov S, Han H, et al. Distant cytosolic residues mediate a two-way molecular switch that controls the modulation of inwardly rectifying potassium (Kir) channels by cholesterol and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)). J Biol Chem. 2012;287(48):40266–78.
pubmed: 22995912 pmcid: 3504743 doi: 10.1074/jbc.M111.336339
Rosenhouse-Dantsker A, Logothetis DE, Levitan I. Cholesterol sensitivity of KIR2.1 is controlled by a belt of residues around the cytosolic pore. Biophys J. 2011;100(2):381–9.
pubmed: 21244834 pmcid: 3021658 doi: 10.1016/j.bpj.2010.11.086
Rosenhouse-Dantsker A, Noskov S, Logothetis DE, Levitan I. Cholesterol sensitivity of KIR2.1 depends on functional inter-links between the N and C termini. Channels (Austin). 2013;7(4):303–12.
pubmed: 23807091 pmcid: 3989358 doi: 10.4161/chan.25437
Hansen SB, Tao X, MacKinnon R. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature. 2011;477(7365):495–8.
pubmed: 21874019 pmcid: 3324908 doi: 10.1038/nature10370
Soom M, Schönherr R, Kubo Y, Kirsch C, Klinger R, Heinemann SH. Multiple PIP2 binding sites in Kir2.1 inwardly rectifying potassium channels. FEBS Lett. 2001;490(1-2):49–53.
pubmed: 11172809 doi: 10.1016/S0014-5793(01)02136-6
Lopes CM, Zhang H, Rohács T, Jin T, Yang J, Logothetis DE. Alterations in conserved Kir channel-PIP2 interactions underlie channelopathies. Neuron. 2002;34(6):933–44.
pubmed: 12086641 doi: 10.1016/S0896-6273(02)00725-0

Auteurs

Avia Rosenhouse-Dantsker (A)

Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA. dantsker@uic.edu.

Dimitris Gazgalis (D)

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA.

Diomedes E Logothetis (DE)

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
Humans Animals Adherens Junctions Intercellular Junctions Tight Junctions
1.00
Plasmodesmata Endoplasmic Reticulum Arabidopsis Cytokinesis Arabidopsis Proteins
Angiotensin-Converting Enzyme 2 Humans SARS-CoV-2 Spike Glycoprotein, Coronavirus Receptors, Virus

Classifications MeSH