From Crosstalk to Synergism: The Combined Effect of Cholesterol and PI(4,5)P
Cholesterol
GIRK channels
Kir channels
PI(4,5)P2
Phosphatidylinositol-bis-phosphate
Potassium channels
Journal
Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103
Informations de publication
Date de publication:
2023
2023
Historique:
medline:
31
3
2023
entrez:
29
3
2023
pubmed:
30
3
2023
Statut:
ppublish
Résumé
Inwardly rectifying potassium (Kir) channels are integral membrane proteins that control the flux of potassium ions across cell membranes and regulate membrane permeability. All eukaryotic Kir channels require the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P
Identifiants
pubmed: 36988881
doi: 10.1007/978-3-031-21547-6_6
doi:
Substances chimiques
Potassium Channels, Inwardly Rectifying
0
Cholesterol
97C5T2UQ7J
Potassium
RWP5GA015D
Lipids
0
G Protein-Coupled Inwardly-Rectifying Potassium Channels
0
Types de publication
Review
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
169-191Informations de copyright
© 2023. The Author(s), under exclusive license to Springer Nature Switzerland AG.
Références
Rosenhouse-Dantsker A, Mehta D, Levitan I. Regulation of ion channels by membrane lipids. Compr Physiol. 2012;2(1):31–68.
pubmed: 23728970
doi: 10.1002/cphy.c110001
Logothetis DE, Jin T, Lupyan D, Rosenhouse-Dantsker A. Phosphoinositide-mediated gating of inwardly rectifying K(+) channels. Pflugers Arch. 2007;455(1):83–95.
pubmed: 17520276
doi: 10.1007/s00424-007-0276-5
Huang CL. Complex roles of PIP2 in the regulation of ion channels and transporters. Am J Physiol Renal Physiol. 2007;293(6):F1761–5.
pubmed: 17928411
doi: 10.1152/ajprenal.00400.2007
Hille B, Dickson EJ, Kruse M, Vivas O, Suh BC. Phosphoinositides regulate ion channels. Biochim Biophys Acta. 2015;1851(6):844–56.
pubmed: 25241941
doi: 10.1016/j.bbalip.2014.09.010
D’Avanzo N, Cheng WW, Doyle DA, Nichols CG. Direct and specific activation of human inward rectifier K+ channels by membrane phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 2010;285(48):37129–32.
pubmed: 20921230
pmcid: 2988318
doi: 10.1074/jbc.C110.186692
Rosenhouse-Dantsker A, Leal-Pinto E, Logothetis DE, Levitan I. Comparative analysis of cholesterol sensitivity of Kir channels: role of the CD loop. Channels (Austin). 2010;4(1):63–6.
pubmed: 19923917
doi: 10.4161/chan.4.1.10366
Bukiya AN, Durdagi S, Noskov S, Rosenhouse-Dantsker A. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus. J Biol Chem. 2017;292(15):6135–47.
pubmed: 28213520
pmcid: 5391746
doi: 10.1074/jbc.M116.753350
Deng W, Bukiya AN, Rodríguez-Menchaca AA, et al. Hypercholesterolemia induces up-regulation of KACh cardiac currents via a mechanism independent of phosphatidylinositol 4,5-bisphosphate and Gβγ. J Biol Chem. 2012;287(7):4925–35.
pubmed: 22174416
doi: 10.1074/jbc.M111.306134
Romanenko VG, Fang Y, Byfield F, et al. Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels. Biophys J. 2004;87(6):3850–61.
pubmed: 15465867
pmcid: 1304896
doi: 10.1529/biophysj.104.043273
Chan KW, Sui JL, Vivaudou M, Logothetis DE. Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit. Proc Natl Acad Sci U S A. 1996;93(24):14193–8.
pubmed: 8943083
pmcid: 19516
doi: 10.1073/pnas.93.24.14193
Vivaudou M, Chan KW, Sui JL, Jan LY, Reuveny E, Logothetis DE. Probing the G-protein regulation of GIRK1 and GIRK4, the two subunits of the KACh channel, using functional homomeric mutants. J Biol Chem. 1997;272(50):31553–60.
pubmed: 9395492
doi: 10.1074/jbc.272.50.31553
Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature. 1997;387(6629):179–83.
pubmed: 9144288
doi: 10.1038/387179a0
Krapivinsky G, Gordon EA, Wickman K, Velimirović B, Krapivinsky L, Clapham DE. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins. Nature. 1995;374(6518):135–41.
pubmed: 7877685
doi: 10.1038/374135a0
Chen X, Johnston D. Constitutively active G-protein-gated inwardly rectifying K+ channels in dendrites of hippocampal CA1 pyramidal neurons. J Neurosci. 2005;25(15):3787–92.
pubmed: 15829630
pmcid: 6724929
doi: 10.1523/JNEUROSCI.5312-04.2005
Van Dongen AM, Codina J, Olate J, et al. Newly identified brain potassium channels gated by the guanine nucleotide binding protein Go. Science. 1988;242(4884):1433–7.
doi: 10.1126/science.3144040
Leaney JL. Contribution of Kir3.1, Kir3.2A and Kir3.2C subunits to native G protein-gated inwardly rectifying potassium currents in cultured hippocampal neurons. Eur J Neurosci. 2003;18(8):2110–8.
pubmed: 14622172
doi: 10.1046/j.1460-9568.2003.02933.x
Grigg JJ, Kozasa T, Nakajima Y, Nakajima S. Single-channel properties of a G-protein-coupled inward rectifier potassium channel in brain neurons. J Neurophysiol. 1996;75(1):318–28.
pubmed: 8822560
doi: 10.1152/jn.1996.75.1.318
Witkowski G, Szulczyk B, Rola R, Szulczyk P. D(1) dopaminergic control of G protein-dependent inward rectifier K(+) (GIRK)-like channel current in pyramidal neurons of the medial prefrontal cortex. Neuroscience. 2008;155(1):53–63.
pubmed: 18571868
doi: 10.1016/j.neuroscience.2008.05.021
Miyake M, Christie MJ, North RA. Single potassium channels opened by opioids in rat locus ceruleus neurons. Proc Natl Acad Sci U S A. 1989;86(9):3419–22.
pubmed: 2566172
pmcid: 287144
doi: 10.1073/pnas.86.9.3419
Kawano T, Zhao P, Nakajima S, Nakajima Y. Single-cell RT-PCR analysis of GIRK channels expressed in rat locus coeruleus and nucleus basalis neurons. Neurosci Lett. 2004;358(1):63–7.
pubmed: 15016435
doi: 10.1016/j.neulet.2003.12.104
Bajic D, Koike M, Albsoul-Younes AM, Nakajima S, Nakajima Y. Two different inward rectifier K+ channels are effectors for transmitter-induced slow excitation in brain neurons. Proc Natl Acad Sci U S A. 2002;99(22):14494–9.
pubmed: 12391298
pmcid: 137911
doi: 10.1073/pnas.222379999
Yi BA, Lin YF, Jan YN, Jan LY. Yeast screen for constitutively active mutant G protein-activated potassium channels. Neuron. 2001;29(3):657–67.
pubmed: 11301025
doi: 10.1016/S0896-6273(01)00241-0
Bukiya AN, Osborn CV, Kuntamallappanavar G, et al. Cholesterol increases the open probability of cardiac KACh currents. Biochim Biophys Acta. 2015;1848(10 Pt):2406–13.
pubmed: 26196595
doi: 10.1016/j.bbamem.2015.07.007
Rosenhouse-Dantsker A, Epshtein Y, Levitan I. Interplay between lipid modulators of Kir2 channels: cholesterol and PIP2. Comput Struct Biotechnol J. 2014;11(19):131–7.
pubmed: 25408847
pmcid: 4232564
doi: 10.1016/j.csbj.2014.09.007
Bukiya AN, Rosenhouse-Dantsker A. Synergistic activation of G protein-gated inwardly rectifying potassium channels by cholesterol and PI(4,5)P
pubmed: 28377218
doi: 10.1016/j.bbamem.2017.03.023
Rohács T, Lopes CM, Jin T, Ramdya PP, Molnár Z, Logothetis DE. Specificity of activation by phosphoinositides determines lipid regulation of Kir channels. Proc Natl Acad Sci U S A. 2003;100(2):745–50.
pubmed: 12525701
pmcid: 141067
doi: 10.1073/pnas.0236364100
Liou HH, Zhou SS, Huang CL. Regulation of ROMK1 channel by protein kinase A via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. Proc Natl Acad Sci U S A. 1999;96(10):5820–5.
pubmed: 10318968
pmcid: 21944
doi: 10.1073/pnas.96.10.5820
Rohács T, Chen J, Prestwich GD, Logothetis DE. Distinct specificities of inwardly rectifying K(+) channels for phosphoinositides. J Biol Chem. 1999;274(51):36065–72.
pubmed: 10593888
doi: 10.1074/jbc.274.51.36065
Zeng WZ, Liou HH, Krishna UM, Falck JR, Huang CL. Structural determinants and specificities for ROMK1-phosphoinositide interaction. Am J Physiol Renal Physiol. 2002;282(5):F826–34.
pubmed: 11934692
doi: 10.1152/ajprenal.00300.2001
Rosenhouse-Dantsker A, Logothetis DE. Molecular characteristics of phosphoinositide binding. Pflugers Arch. 2007;455(1):45–53.
pubmed: 17588168
doi: 10.1007/s00424-007-0291-6
Hilgemann DW. On the physiological roles of PIP(2) at cardiac Na+ Ca2+ exchangers and K(ATP) channels: a long journey from membrane biophysics into cell biology. J Physiol. 2007;582(Pt 3):903–9.
pubmed: 17463041
pmcid: 2075268
doi: 10.1113/jphysiol.2007.132746
Suh BC, Hille B. PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys. 2008;37:175–95.
pubmed: 18573078
pmcid: 2692585
doi: 10.1146/annurev.biophys.37.032807.125859
Whorton MR, MacKinnon R. Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell. 2011;147(1):199–208.
pubmed: 21962516
pmcid: 3243363
doi: 10.1016/j.cell.2011.07.046
Niu Y, Tao X, Touhara KK, MacKinnon R. Cryo-EM analysis of PIP
pubmed: 32844743
pmcid: 7556866
doi: 10.7554/eLife.60552
Zangerl-Plessl EM, Lee SJ, Maksaev G, et al. Atomistic basis of opening and conduction in mammalian inward rectifier potassium (Kir2.2) channels. J Gen Physiol. 2020;152(1):e201912422.
pubmed: 31744859
Hansen SB, Tao X, MacKinnon R. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature. 2011;477(7365):495–8.
pubmed: 21874019
pmcid: 3324908
doi: 10.1038/nature10370
Whorton MR, MacKinnon R. X-ray structure of the mammalian GIRK2-βγ G-protein complex. Nature. 2013;498(7453):190–7.
pubmed: 23739333
pmcid: 4654628
doi: 10.1038/nature12241
Rosenhouse-Dantsker A, Noskov S, Durdagi S, Logothetis DE, Levitan I. Identification of novel cholesterol-binding regions in Kir2 channels. J Biol Chem. 2013;288(43):31154–64.
pubmed: 24019518
pmcid: 3829427
doi: 10.1074/jbc.M113.496117
Fürst O, Nichols CG, Lamoureux G, D’Avanzo N. Identification of a cholesterol-binding pocket in inward rectifier K(+) (Kir) channels. Biophys J. 2014;107(12):2786–96.
pubmed: 25517146
pmcid: 4269788
doi: 10.1016/j.bpj.2014.10.066
Jones OT, McNamee MG. Annular and nonannular binding sites for cholesterol associated with the nicotinic acetylcholine receptor. Biochemistry. 1988;27(7):2364–74.
pubmed: 3382628
doi: 10.1021/bi00407a018
Corradi V, Bukiya AN, Miranda WE, et al. A molecular switch controls the impact of cholesterol on a Kir channel. Proc Natl Acad Sci U S A. 2022;119(13):e2109431119.
pubmed: 35333652
pmcid: 9060494
doi: 10.1073/pnas.2109431119
Rosenhouse-Dantsker A. Cholesterol binding sites in inwardly rectifying potassium channels. Adv Exp Med Biol. 2019;1135:119–38.
pubmed: 31098814
doi: 10.1007/978-3-030-14265-0_7
Mathiharan YK, Glaaser IW, Zhao Y, Robertson MJ, Skiniotis G, Slesinger PA. Structural insights into GIRK2 channel modulation by cholesterol and PIP
pubmed: 34433062
pmcid: 8436891
doi: 10.1016/j.celrep.2021.109619
Ohvo-Rekilä H, Ramstedt B, Leppimäki P, Slotte JP. Cholesterol interactions with phospholipids in membranes. Prog Lipid Res. 2002;41(1):66–97.
pubmed: 11694269
doi: 10.1016/S0163-7827(01)00020-0
Hung WC, Lee MT, Chen FY, Huang HW. The condensing effect of cholesterol in lipid bilayers. Biophys J. 2007;92(11):3960–7.
pubmed: 17369407
pmcid: 1868968
doi: 10.1529/biophysj.106.099234
Ermilova I, Lyubartsev AP. Cholesterol in phospholipid bilayers: positions and orientations inside membranes with different unsaturation degrees. Soft Matter. 2018;15(1):78–93.
pubmed: 30520494
doi: 10.1039/C8SM01937A
Jin T, Sui JL, Rosenhouse-Dantsker A, Chan KW, Jan LY, Logothetis DE. Stoichiometry of Kir channels with phosphatidylinositol bisphosphate. Channels (Austin). 2008;2(1):19–33.
pubmed: 18690051
doi: 10.4161/chan.2.1.5942
Logothetis DE, Lupyan D, Rosenhouse-Dantsker A. Diverse Kir modulators act in close proximity to residues implicated in phosphoinositide binding. J Physiol. 2007;582(Pt 3):953–65.
pubmed: 17495041
pmcid: 2075264
doi: 10.1113/jphysiol.2007.133157
Fan Z, Makielski JC. Anionic phospholipids activate ATP-sensitive potassium channels. J Biol Chem. 1997;272(9):5388–95.
pubmed: 9038137
doi: 10.1074/jbc.272.9.5388
Haider S, Tarasov AI, Craig TJ, Sansom MS, Ashcroft FM. Identification of the PIP2-binding site on Kir6.2 by molecular modelling and functional analysis. EMBO J. 2007;26(16):3749–59.
pubmed: 17673911
pmcid: 1952224
doi: 10.1038/sj.emboj.7601809
Du X, Zhang H, Lopes C, Mirshahi T, Rohacs T, Logothetis DE. Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine regulation of kir channels by diverse modulators. J Biol Chem. 2004;279(36):37271–81.
pubmed: 15155739
doi: 10.1074/jbc.M403413200
Lopes CM, Zhang H, Rohacs T, Jin T, Yang J, Logothetis DE. Alterations in conserved Kir channel-PIP2 interactions underlie channelopathies. Neuron. 2002;34(6):933–44.
pubmed: 12086641
doi: 10.1016/S0896-6273(02)00725-0
Schulze D, Krauter T, Fritzenschaft H, Soom M, Baukrowitz T. Phosphatidylinositol 4,5-bisphosphate (PIP2) modulation of ATP and pH sensitivity in Kir channels. A tale of an active and a silent PIP2 site in the N terminus. J Biol Chem. 2003;278(12):10500–5.
pubmed: 12514171
doi: 10.1074/jbc.M208413200
Enkvetchakul D, Jeliazkova I, Nichols CG. Direct modulation of Kir channel gating by membrane phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 2005;280(43):35785–8.
pubmed: 16144841
doi: 10.1074/jbc.C500355200
Stansfeld PJ, Hopkinson R, Ashcroft FM, Sansom MS. PIP(2)-binding site in Kir channels: definition by multiscale biomolecular simulations. Biochemistry. 2009;48(46):10926–33.
pubmed: 19839652
doi: 10.1021/bi9013193
Leal-Pinto E, Gómez-Llorente Y, Sundaram S, et al. Gating of a G protein-sensitive mammalian Kir3.1 prokaryotic Kir channel chimera in planar lipid bilayers. J Biol Chem. 2010;285(51):39790–800.
pubmed: 20937804
pmcid: 3000960
doi: 10.1074/jbc.M110.151373
Zhang H, He C, Yan X, Mirshahi T, Logothetis DE. Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nat Cell Biol. 1999;1(3):183–8.
pubmed: 10559906
doi: 10.1038/11103
Nishida M, Cadene M, Chait BT, MacKinnon R. Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J. 2007;26(17):4005–15.
pubmed: 17703190
pmcid: 1994128
doi: 10.1038/sj.emboj.7601828
Rapedius M, Fowler PW, Shang L, Sansom MS, Tucker SJ, Baukrowitz T. H bonding at the helix-bundle crossing controls gating in Kir potassium channels. Neuron. 2007;55(4):602–14.
pubmed: 17698013
pmcid: 1950231
doi: 10.1016/j.neuron.2007.07.026
Tucker SJ, Baukrowitz T. How highly charged anionic lipids bind and regulate ion channels. J Gen Physiol. 2008;131(5):431–8.
pubmed: 18411329
pmcid: 2346576
doi: 10.1085/jgp.200709936
Xie LH, John SA, Ribalet B, Weiss JN. Phosphatidylinositol-4,5-bisphosphate (PIP2) regulation of strong inward rectifier Kir2.1 channels: multilevel positive cooperativity. J Physiol. 2008;586(7):1833–48.
pubmed: 18276733
pmcid: 2375719
doi: 10.1113/jphysiol.2007.147868
Nasuhoglu C, Feng S, Mao J, et al. Nonradioactive analysis of phosphatidylinositides and other anionic phospholipids by anion-exchange high-performance liquid chromatography with suppressed conductivity detection. Anal Biochem. 2002;301(2):243–54.
pubmed: 11814295
doi: 10.1006/abio.2001.5489
Hilgemann DW. Local PIP(2) signals: when, where, and how? Pflugers Arch. 2007;455(1):55–67.
pubmed: 17534652
doi: 10.1007/s00424-007-0280-9
Gimpl G, Burger K, Fahrenholz F. Cholesterol as modulator of receptor function. Biochemistry. 1997;36(36):10959–74.
pubmed: 9283088
doi: 10.1021/bi963138w
Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE. The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature. 1987;325(6102):321–6.
pubmed: 2433589
doi: 10.1038/325321a0
Sui JL, Chan KW, Logothetis DE. Na+ activation of the muscarinic K+ channel by a G-protein-independent mechanism. J Gen Physiol. 1996;108(5):381–91.
pubmed: 8923264
doi: 10.1085/jgp.108.5.381
Sui JL, Petit-Jacques J, Logothetis DE. Activation of the atrial KACh channel by the betagamma subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates. Proc Natl Acad Sci U S A. 1998;95(3):1307–12.
pubmed: 9448327
pmcid: 18753
doi: 10.1073/pnas.95.3.1307
Huang CL, Feng S, Hilgemann DW. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature. 1998;391(6669):803–6.
pubmed: 9486652
doi: 10.1038/35882
Ho IH, Murrell-Lagnado RD. Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. J Biol Chem. 1999;274(13):8639–48.
pubmed: 10085101
doi: 10.1074/jbc.274.13.8639
Ho IH, Murrell-Lagnado RD. Molecular mechanism for sodium-dependent activation of G protein-gated K+ channels. J Physiol. 1999;520(Pt 3):645–51.
pubmed: 10545132
pmcid: 2269610
doi: 10.1111/j.1469-7793.1999.00645.x
Rosenhouse-Dantsker A, Sui JL, Zhao Q, et al. A sodium-mediated structural switch that controls the sensitivity of Kir channels to PtdIns(4,5)P(2). Nat Chem Biol. 2008;4(10):624–31.
pubmed: 18794864
pmcid: 4100997
doi: 10.1038/nchembio.112
Mahajan R, Ha J, Zhang M, Kawano T, Kozasa T, Logothetis DE. A computational model predicts that Gβγ acts at a cleft between channel subunits to activate GIRK1 channels. Sci Signal. 2013;6(288):ra69.
pubmed: 23943609
pmcid: 4100999
doi: 10.1126/scisignal.2004075
Petit-Jacques J, Sui JL, Logothetis DE. Synergistic activation of G protein-gated inwardly rectifying potassium channels by the betagamma subunits of G proteins and Na(+) and Mg(2+) ions. J Gen Physiol. 1999;114(5):673–84.
pubmed: 10532964
pmcid: 2230539
doi: 10.1085/jgp.114.5.673
Li D, Jin T, Gazgalis D, Cui M, Logothetis DE. On the mechanism of GIRK2 channel gating by phosphatidylinositol bisphosphate, sodium, and the Gβγ dimer. J Biol Chem. 2019;294(49):18934–48.
pubmed: 31659119
pmcid: 6901319
doi: 10.1074/jbc.RA119.010047
Tao X, Avalos JL, Chen J, MacKinnon R. Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Science. 2009;326(5960):1668–74.
pubmed: 20019282
pmcid: 2819303
doi: 10.1126/science.1180310
Epshtein Y, Chopra AP, Rosenhouse-Dantsker A, Kowalsky GB, Logothetis DE, Levitan I. Identification of a C-terminus domain critical for the sensitivity of Kir2.1 to cholesterol. Proc Natl Acad Sci U S A. 2009;106(19):8055–60.
pubmed: 19416905
pmcid: 2683107
doi: 10.1073/pnas.0809847106
Rosenhouse-Dantsker A, Noskov S, Han H, et al. Distant cytosolic residues mediate a two-way molecular switch that controls the modulation of inwardly rectifying potassium (Kir) channels by cholesterol and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)). J Biol Chem. 2012;287(48):40266–78.
pubmed: 22995912
pmcid: 3504743
doi: 10.1074/jbc.M111.336339
Rosenhouse-Dantsker A, Logothetis DE, Levitan I. Cholesterol sensitivity of KIR2.1 is controlled by a belt of residues around the cytosolic pore. Biophys J. 2011;100(2):381–9.
pubmed: 21244834
pmcid: 3021658
doi: 10.1016/j.bpj.2010.11.086
Rosenhouse-Dantsker A, Levitan I. Insights into structural determinants of cholesterol sensitivity of kir channels. In: Levitan I, Barrantes FJ, editors. Cholesterol regulation of ion channels and receptors. Chapter 3. Hoboken, NJ: Wiley; 2012. p. 47–67.
Garneau L, Klein H, Parent L, Sauvé R. Contribution of cytosolic cysteine residues to the gating properties of the Kir2.1 inward rectifier. Biophys J. 2003;84(6):3717–29.
pubmed: 12770878
pmcid: 1302954
doi: 10.1016/S0006-3495(03)75100-5
Rosenhouse-Dantsker A, Noskov S, Logothetis DE, Levitan I. Cholesterol sensitivity of KIR2.1 depends on functional inter-links between the N and C termini. Channels (Austin). 2013;7(4):303–12.
pubmed: 23807091
doi: 10.4161/chan.25437
An HL, Lü SQ, Li JW, et al. The cytosolic GH loop regulates the phosphatidylinositol 4,5-bisphosphate-induced gating kinetics of Kir2 channels. J Biol Chem. 2012;287(50):42278–87.
pubmed: 23033482
pmcid: 3516771
doi: 10.1074/jbc.M112.418640
Meng XY, Zhang HX, Logothetis DE, Cui M. The molecular mechanism by which PIP(2) opens the intracellular G-loop gate of a Kir3.1 channel. Biophys J. 2012;102(9):2049–59.
pubmed: 22824268
pmcid: 3341553
doi: 10.1016/j.bpj.2012.03.050
Clarke OB, Caputo AT, Hill AP, Vandenberg JI, Smith BJ, Gulbis JM. Domain reorientation and rotation of an intracellular assembly regulate conduction in Kir potassium channels. Cell. 2010;141(6):1018–29.
pubmed: 20564790
doi: 10.1016/j.cell.2010.05.003
Murata Y, Okamura Y. Depolarization activates the phosphoinositide phosphatase ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2. J Physiol. 2007;583(Pt 3):875–89.
pubmed: 17615106
pmcid: 2277204
doi: 10.1113/jphysiol.2007.134775
Glaaser IW, Slesinger PA. Dual activation of neuronal G protein-gated inwardly rectifying potassium (GIRK) channels by cholesterol and alcohol. Sci Rep. 2017;7(1):4592.
pubmed: 28676630
pmcid: 5496853
doi: 10.1038/s41598-017-04681-x
Rosenhouse-Dantsker A. Cholesterol-binding sites in GIRK channels: the devil is in the details. Lipid Insights. 2018;11:1178635317754071.
pubmed: 29467578
pmcid: 5815411
doi: 10.1177/1178635317754071
Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235–42.
pubmed: 10592235
pmcid: 102472
doi: 10.1093/nar/28.1.235
Tai K, Stansfeld PJ, Sansom MS. Ion-blocking sites of the Kir2.1 channel revealed by multiscale modeling. Biochemistry. 2009;48(36):8758–63.
pubmed: 19653656
doi: 10.1021/bi9007808