Ca
Annexins
Ca2 +
Cholesterol
Membrane contact sites
Membrane trafficking
Phosphatidylinositides
Journal
Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103
Informations de publication
Date de publication:
2023
2023
Historique:
medline:
31
3
2023
entrez:
29
3
2023
pubmed:
30
3
2023
Statut:
ppublish
Résumé
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca
Identifiants
pubmed: 36988890
doi: 10.1007/978-3-031-21547-6_15
doi:
Substances chimiques
Phosphatidylinositols
0
Annexins
0
Carrier Proteins
0
Cholesterol
97C5T2UQ7J
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
393-438Informations de copyright
© 2023. The Author(s), under exclusive license to Springer Nature Switzerland AG.
Références
Palade GE, Siekevitz P. Pancreatic microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956;2(6):671–90. https://doi.org/10.1083/jcb.2.6.671 .
doi: 10.1083/jcb.2.6.671
pubmed: 13398437
pmcid: 2224000
Vance JE. Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem. 1990;265(13):7248–56.
doi: 10.1016/S0021-9258(19)39106-9
pubmed: 2332429
Sudhof TC. Calcium control of neurotransmitter release. Cold Spring Harb Perspect Biol. 2012;4(1):a011353. https://doi.org/10.1101/cshperspect.a011353 .
doi: 10.1101/cshperspect.a011353
pubmed: 22068972
pmcid: 3249630
Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4(7):517–29. https://doi.org/10.1038/nrm1155 .
doi: 10.1038/nrm1155
pubmed: 12838335
Carafoli E, Santella L, Branca D, Brini M. Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol. 2001;36(2):107–260. https://doi.org/10.1080/20014091074183 .
doi: 10.1080/20014091074183
pubmed: 11370791
Luzio JP, Pryor PR, Bright NA. Lysosomes: fusion and function. Nat Rev Mol Cell Biol. 2007;8(8):622–32. https://doi.org/10.1038/nrm2217 .
doi: 10.1038/nrm2217
pubmed: 17637737
Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, et al. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med. 2008;14(11):1247–55. https://doi.org/10.1038/nm.1876 .
doi: 10.1038/nm.1876
pubmed: 18953351
Allan D, Low MG, Finean JB, Michell RH. Changes in lipid metabolism and cell morphology following attack by phospholipase C (Clostridium perfringens) on red cells or lymphocytes. Biochim Biophys Acta. 1975;413(2):309–16. https://doi.org/10.1016/0005-2736(75)90116-9 .
doi: 10.1016/0005-2736(75)90116-9
pubmed: 172156
Balla T. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev. 2013;93(3):1019–137. https://doi.org/10.1152/physrev.00028.2012 .
doi: 10.1152/physrev.00028.2012
pubmed: 23899561
pmcid: 3962547
Balla T, Gulyas G, Kim YJ, Pemberton J. Phosphoinositides and calcium signaling. A marriage arranged in Er-pm contact sites. Curr Opin Physiol. 2020;17:149–57. https://doi.org/10.1016/j.cophys.2020.08.007 .
doi: 10.1016/j.cophys.2020.08.007
pubmed: 32944676
pmcid: 7491876
Carroll K, Gomez C, Shapiro L. Tubby proteins: the plot thickens. Nat Rev Mol Cell Biol. 2004;5(1):55–63. https://doi.org/10.1038/nrm1278 .
doi: 10.1038/nrm1278
pubmed: 14708010
Monteiro ME, Sarmento MJ, Fernandes F. Role of calcium in membrane interactions by PI(4,5)P(2)-binding proteins. Biochem Soc Trans. 2014;42(5):1441–6. https://doi.org/10.1042/BST20140149 .
doi: 10.1042/BST20140149
pubmed: 25233429
Gerke V, Creutz CE, Moss SE. Annexins: linking Ca
doi: 10.1038/nrm1661
pubmed: 15928709
Enrich C, Rentero C, de Muga SV, Reverter M, Mulay V, Wood P, et al. Annexin A6-Linking Ca(2+) signaling with cholesterol transport. Biochim Biophys Acta. 2011;1813(5):935–47. https://doi.org/10.1016/j.bbamcr.2010.09.015 .
doi: 10.1016/j.bbamcr.2010.09.015
pubmed: 20888375
Enrich C, Rentero C, Meneses-Salas E, Tebar F, Grewal T. Annexins: Ca(2+) effectors determining membrane trafficking in the late endocytic compartment. Adv Exp Med Biol. 2017;981:351–85. https://doi.org/10.1007/978-3-319-55858-5_14 .
doi: 10.1007/978-3-319-55858-5_14
pubmed: 29594868
Grewal T, Rentero C, Enrich C, Wahba M, Raabe CA, Rescher U. Annexin animal models-from fundamental principles to translational research. Int J Mol Sci. 2021;22(7):3439. https://doi.org/10.3390/ijms22073439 .
doi: 10.3390/ijms22073439
pubmed: 33810523
pmcid: 8037771
Swairjo MA, Concha NO, Kaetzel MA, Dedman JR, Seaton BA. Ca(2+)-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat Struct Biol. 1995;2(11):968–74. https://doi.org/10.1038/nsb1195-968 .
doi: 10.1038/nsb1195-968
pubmed: 7583670
Rosengarth A, Luecke H. A calcium-driven conformational switch of the N-terminal and core domains of annexin A1. J Mol Biol. 2003;326(5):1317–25. https://doi.org/10.1016/s0022-2836(03)00027-5 .
doi: 10.1016/s0022-2836(03)00027-5
pubmed: 12595246
Babiychuk EB, Atanassoff AP, Monastyrskaya K, Brandenberger C, Studer D, Allemann C, et al. The targeting of plasmalemmal ceramide to mitochondria during apoptosis. PLoS One. 2011;6(8):e23706. https://doi.org/10.1371/journal.pone.0023706 .
doi: 10.1371/journal.pone.0023706
pubmed: 21886813
pmcid: 3158777
Monastyrskaya K, Babiychuk EB, Draeger A. The annexins: spatial and temporal coordination of signaling events during cellular stress. Cell Mol Life Sci. 2009;66(16):2623–42. https://doi.org/10.1007/s00018-009-0027-1 .
doi: 10.1007/s00018-009-0027-1
pubmed: 19381436
Babiychuk EB, Monastyrskaya K, Draeger A. Fluorescent annexin A1 reveals dynamics of ceramide platforms in living cells. Traffic. 2008;9(10):1757–75. https://doi.org/10.1111/j.1600-0854.2008.00800.x .
doi: 10.1111/j.1600-0854.2008.00800.x
pubmed: 18694456
Raynal P, Pollard HB. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994;1197(1):63–93. https://doi.org/10.1016/0304-4157(94)90019-1 .
doi: 10.1016/0304-4157(94)90019-1
pubmed: 8155692
Rescher U, Ruhe D, Ludwig C, Zobiack N, Gerke V. Annexin 2 is a phosphatidylinositol (4,5)-bisphosphate binding protein recruited to actin assembly sites at cellular membranes. J Cell Sci. 2004;117(Pt 16):3473–80. https://doi.org/10.1242/jcs.01208 .
doi: 10.1242/jcs.01208
pubmed: 15226372
Goebeler V, Ruhe D, Gerke V, Rescher U. Annexin A8 displays unique phospholipid and F-actin binding properties. FEBS Lett. 2006;580(10):2430–4. https://doi.org/10.1016/j.febslet.2006.03.076 .
doi: 10.1016/j.febslet.2006.03.076
pubmed: 16638567
Junker M, Creutz CE. Ca(2+)-dependent binding of endonexin (annexin IV) to membranes: analysis of the effects of membrane lipid composition and development of a predictive model for the binding interaction. Biochemistry. 1994;33(30):8930–40. https://doi.org/10.1021/bi00196a010 .
doi: 10.1021/bi00196a010
pubmed: 8043580
Sarmento MJ, Coutinho A, Fedorov A, Prieto M, Fernandes F. Ca(2+) induces PI(4,5)P2 clusters on lipid bilayers at physiological PI(4,5)P2 and Ca(2+) concentrations. Biochim Biophys Acta. 2014;1838(3):822–30. https://doi.org/10.1016/j.bbamem.2013.11.020 .
doi: 10.1016/j.bbamem.2013.11.020
pubmed: 24316170
Levental I, Christian DA, Wang YH, Madara JJ, Discher DE, Janmey PA. Calcium-dependent lateral organization in phosphatidylinositol 4,5-bisphosphate (PIP2)- and cholesterol-containing monolayers. Biochemistry. 2009;48(34):8241–8. https://doi.org/10.1021/bi9007879 .
doi: 10.1021/bi9007879
pubmed: 19630438
Kutchukian C, Vivas O, Casas M, Jones JG, Tiscione SA, Simo S, et al. NPC1 regulates the distribution of phosphatidylinositol 4-kinases at Golgi and lysosomal membranes. EMBO J. 2021;40(13):e105990. https://doi.org/10.15252/embj.2020105990 .
doi: 10.15252/embj.2020105990
pubmed: 34019311
pmcid: 8246069
Tiscione SA, Casas M, Horvath JD, Lam V, Hino K, Ory DS, et al. IP3R-driven increases in mitochondrial Ca(2+) promote neuronal death in NPC disease. Proc Natl Acad Sci U S A. 2021;118(40):e2110629118. https://doi.org/10.1073/pnas.2110629118 .
doi: 10.1073/pnas.2110629118
pubmed: 34580197
pmcid: 8501836
Dickson EJ. Phosphoinositide transport and metabolism at membrane contact sites. Biochim Biophys Acta Mol Cell Biol Lipids. 1867;2022(3):159107. https://doi.org/10.1016/j.bbalip.2021.159107 .
doi: 10.1016/j.bbalip.2021.159107
Hasan R, Zhang X. Ca(2+) regulation of TRP ion channels. Int J Mol Sci. 2018;19(4):1256. https://doi.org/10.3390/ijms19041256 .
doi: 10.3390/ijms19041256
pubmed: 29690581
pmcid: 5979445
Chin D, Means AR. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 2000;10(8):322–8. https://doi.org/10.1016/s0962-8924(00)01800-6 .
doi: 10.1016/s0962-8924(00)01800-6
pubmed: 10884684
Laux T, Fukami K, Thelen M, Golub T, Frey D, Caroni P. GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol. 2000;149(7):1455–72. https://doi.org/10.1083/jcb.149.7.1455 .
doi: 10.1083/jcb.149.7.1455
pubmed: 10871285
pmcid: 2175130
Di Giovanni J, Iborra C, Maulet Y, Leveque C, El Far O, Seagar M. Calcium-dependent regulation of SNARE-mediated membrane fusion by calmodulin. J Biol Chem. 2010;285(31):23665–75. https://doi.org/10.1074/jbc.M109.096073 .
doi: 10.1074/jbc.M109.096073
pubmed: 20519509
pmcid: 2911300
Clapham DE. Calcium signaling. Cell. 2007;131(6):1047–58. https://doi.org/10.1016/j.cell.2007.11.028 .
doi: 10.1016/j.cell.2007.11.028
pubmed: 18083096
McLaughlin S, Murray D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature. 2005;438(7068):605–11. https://doi.org/10.1038/nature04398 .
doi: 10.1038/nature04398
pubmed: 16319880
Wong LH, Gatta AT, Levine TP. Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes. Nat Rev Mol Cell Biol. 2019;20(2):85–101. https://doi.org/10.1038/s41580-018-0071-5 .
doi: 10.1038/s41580-018-0071-5
pubmed: 30337668
Nakatsu F, Kawasaki A. Functions of oxysterol-binding proteins at membrane contact sites and their control by phosphoinositide metabolism. Front Cell Dev Biol. 2021;9:664788. https://doi.org/10.3389/fcell.2021.664788 .
doi: 10.3389/fcell.2021.664788
pubmed: 34249917
pmcid: 8264513
Wirtz KW, Zilversmit DB. Exchange of phospholipids between liver mitochondria and microsomes in vitro. J Biol Chem. 1968;243(13):3596–602.
doi: 10.1016/S0021-9258(19)34182-1
pubmed: 4968799
Kumagai K, Kawano M, Shinkai-Ouchi F, Nishijima M, Hanada K. Interorganelle trafficking of ceramide is regulated by phosphorylation-dependent cooperativity between the PH and START domains of CERT. J Biol Chem. 2007;282(24):17758–66. https://doi.org/10.1074/jbc.M702291200 .
doi: 10.1074/jbc.M702291200
pubmed: 17442665
Kumagai K, Kawano-Kawada M, Hanada K. Phosphoregulation of the ceramide transport protein CERT at serine 315 in the interaction with VAMP-associated protein (VAP) for inter-organelle trafficking of ceramide in mammalian cells. J Biol Chem. 2014;289(15):10748–60. https://doi.org/10.1074/jbc.M113.528380 .
doi: 10.1074/jbc.M113.528380
pubmed: 24569996
pmcid: 4036191
Prashek J, Bouyain S, Fu M, Li Y, Berkes D, Yao X. Interaction between the PH and START domains of ceramide transfer protein competes with phosphatidylinositol 4-phosphate binding by the PH domain. J Biol Chem. 2017;292(34):14217–28. https://doi.org/10.1074/jbc.M117.780007 .
doi: 10.1074/jbc.M117.780007
pubmed: 28652409
pmcid: 5572904
Malhotra V, Campelo F. PKD regulates membrane fission to generate TGN to cell surface transport carriers. Cold Spring Harb Perspect Biol. 2011;3(2):a005280. https://doi.org/10.1101/cshperspect.a005280 .
doi: 10.1101/cshperspect.a005280
pubmed: 21421913
pmcid: 3039530
Kumagai K, Hanada K. Structure, functions and regulation of CERT, a lipid-transfer protein for the delivery of ceramide at the ER-Golgi membrane contact sites. FEBS Lett. 2019;593(17):2366–77. https://doi.org/10.1002/1873-3468.13511 .
doi: 10.1002/1873-3468.13511
pubmed: 31254361
Mesmin B, Bigay J. Moser von Filseck J, Lacas-Gervais S, Drin G, Antonny B. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell. 2013;155(4):830–43. https://doi.org/10.1016/j.cell.2013.09.056 .
doi: 10.1016/j.cell.2013.09.056
pubmed: 24209621
von Blume J, Hausser A. Lipid-dependent coupling of secretory cargo sorting and trafficking at the trans-Golgi network. FEBS Lett. 2019;593(17):2412–27. https://doi.org/10.1002/1873-3468.13552 .
doi: 10.1002/1873-3468.13552
Bankaitis VA, Garcia-Mata R, Mousley CJ. Golgi membrane dynamics and lipid metabolism. Curr Biol. 2012;22(10):R414–24. https://doi.org/10.1016/j.cub.2012.03.004 .
doi: 10.1016/j.cub.2012.03.004
pubmed: 22625862
pmcid: 4059015
Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M, et al. Molecular machinery for non-vesicular trafficking of ceramide. Nature. 2003;426(6968):803–9. https://doi.org/10.1038/nature02188 .
doi: 10.1038/nature02188
pubmed: 14685229
Wang YJ, Wang J, Sun HQ, Martinez M, Sun YX, Macia E, et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell. 2003;114(3):299–310. https://doi.org/10.1016/s0092-8674(03)00603-2 .
doi: 10.1016/s0092-8674(03)00603-2
pubmed: 12914695
Ford C, Parchure A, von Blume J, Burd CG. Cargo sorting at the trans-Golgi network at a glance. J Cell Sci. 2021;134(23):jcs259110. https://doi.org/10.1242/jcs.259110 .
doi: 10.1242/jcs.259110
pubmed: 34870705
pmcid: 8714066
Giordano F, Saheki Y, Idevall-Hagren O, Colombo SF, Pirruccello M, Milosevic I, et al. PI(4,5)P(2)-dependent and Ca(2+)-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell. 2013;153(7):1494–509. https://doi.org/10.1016/j.cell.2013.05.026 .
doi: 10.1016/j.cell.2013.05.026
pubmed: 23791178
pmcid: 3716012
Bian X, Saheki Y, De Camilli P. Ca(2+) releases E-Syt1 autoinhibition to couple ER-plasma membrane tethering with lipid transport. EMBO J. 2018;37(2):219–34. https://doi.org/10.15252/embj.201797359 .
doi: 10.15252/embj.201797359
pubmed: 29222176
Min SW, Chang WP, Sudhof TC. E-Syts, a family of membranous Ca
doi: 10.1073/pnas.0611725104
pubmed: 17360437
pmcid: 1820668
Saheki Y, Bian X, Schauder CM, Sawaki Y, Surma MA, Klose C, et al. Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat Cell Biol. 2016;18(5):504–15. https://doi.org/10.1038/ncb3339 .
doi: 10.1038/ncb3339
pubmed: 27065097
pmcid: 4848133
Chang CL, Hsieh TS, Yang TT, Rothberg KG, Azizoglu DB, Volk E, et al. Feedback regulation of receptor-induced Ca
doi: 10.1016/j.celrep.2013.09.038
pubmed: 24183667
Clark BJ. The mammalian START domain protein family in lipid transport in health and disease. J Endocrinol. 2012;212(3):257–75. https://doi.org/10.1530/JOE-11-0313 .
doi: 10.1530/JOE-11-0313
pubmed: 21965545
Alpy F, Tomasetto C. Give lipids a START: the StAR-related lipid transfer (START) domain in mammals. J Cell Sci. 2005;118(Pt 13):2791–801. https://doi.org/10.1242/jcs.02485 .
doi: 10.1242/jcs.02485
pubmed: 15976441
Pietrangelo A, Ridgway ND. Bridging the molecular and biological functions of the oxysterol-binding protein family. Cell Mol Life Sci. 2018;75(17):3079–98. https://doi.org/10.1007/s00018-018-2795-y .
doi: 10.1007/s00018-018-2795-y
pubmed: 29536114
Kentala H, Weber-Boyvat M, Olkkonen VM. OSBP-related protein family: mediators of lipid transport and signaling at membrane contact sites. Int Rev Cell Mol Biol. 2016;321:299–340. https://doi.org/10.1016/bs.ircmb.2015.09.006 .
doi: 10.1016/bs.ircmb.2015.09.006
pubmed: 26811291
Wilhelm LP, Wendling C, Vedie B, Kobayashi T, Chenard MP, Tomasetto C, et al. STARD3 mediates endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites. EMBO J. 2017;36(10):1412–33. https://doi.org/10.15252/embj.201695917 .
doi: 10.15252/embj.201695917
pubmed: 28377464
pmcid: 5430228
Tsujishita Y, Hurley JH. Structure and lipid transport mechanism of a StAR-related domain. Nat Struct Biol. 2000;7(5):408–14. https://doi.org/10.1038/75192 .
doi: 10.1038/75192
pubmed: 10802740
Iaea DB, Maxfield FR. Cholesterol trafficking and distribution. Essays Biochem. 2015;57:43–55. https://doi.org/10.1042/bse0570043 .
doi: 10.1042/bse0570043
pubmed: 25658343
Alpy F, Tomasetto C. START ships lipids across interorganelle space. Biochimie. 2014;96:85–95. https://doi.org/10.1016/j.biochi.2013.09.015 .
doi: 10.1016/j.biochi.2013.09.015
pubmed: 24076129
Elustondo P, Martin LA, Karten B. Mitochondrial cholesterol import. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(1):90–101. https://doi.org/10.1016/j.bbalip.2016.08.012 .
doi: 10.1016/j.bbalip.2016.08.012
pubmed: 27565112
Reitz J, Gehrig-Burger K, Strauss JF 3rd, Gimpl G. Cholesterol interaction with the related steroidogenic acute regulatory lipid-transfer (START) domains of StAR (STARD1) and MLN64 (STARD3). FEBS J. 2008;275(8):1790–802. https://doi.org/10.1111/j.1742-4658.2008.06337.x .
doi: 10.1111/j.1742-4658.2008.06337.x
pubmed: 18331352
Stocco DM. StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol. 2001;63:193–213. https://doi.org/10.1146/annurev.physiol.63.1.193 .
doi: 10.1146/annurev.physiol.63.1.193
pubmed: 11181954
Holthuis JC, Levine TP. Lipid traffic: floppy drives and a superhighway. Nat Rev Mol Cell Biol. 2005;6(3):209–20. https://doi.org/10.1038/nrm1591 .
doi: 10.1038/nrm1591
pubmed: 15738987
Zhang M, Liu P, Dwyer NK, Christenson LK, Fujimoto T, Martinez F, et al. MLN64 mediates mobilization of lysosomal cholesterol to steroidogenic mitochondria. J Biol Chem. 2002;277(36):33300–10. https://doi.org/10.1074/jbc.M200003200 .
doi: 10.1074/jbc.M200003200
pubmed: 12070139
Munro S. Cell biology: earthworms and lipid couriers. Nature. 2003;426(6968):775–6. https://doi.org/10.1038/426775a .
doi: 10.1038/426775a
pubmed: 14685214
Alpy F, Stoeckel ME, Dierich A, Escola JM, Wendling C, Chenard MP, et al. The steroidogenic acute regulatory protein homolog MLN64, a late endosomal cholesterol-binding protein. J Biol Chem. 2001;276(6):4261–9. https://doi.org/10.1074/jbc.M006279200 .
doi: 10.1074/jbc.M006279200
pubmed: 11053434
Balboa E, Castro J, Pinochet MJ, Cancino GI, Matias N, Saez PJ, et al. MLN64 induces mitochondrial dysfunction associated with increased mitochondrial cholesterol content. Redox Biol. 2017;12:274–84. https://doi.org/10.1016/j.redox.2017.02.024 .
doi: 10.1016/j.redox.2017.02.024
pubmed: 28282615
pmcid: 5344325
de Saint-Jean M, Delfosse V, Douguet D, Chicanne G, Payrastre B, Bourguet W, et al. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. J Cell Biol. 2011;195(6):965–78. https://doi.org/10.1083/jcb.201104062 .
doi: 10.1083/jcb.201104062
pubmed: 22162133
pmcid: 3241724
Mesmin B, Antonny B, Drin G. Insights into the mechanisms of sterol transport between organelles. Cell Mol Life Sci. 2013;70(18):3405–21. https://doi.org/10.1007/s00018-012-1247-3 .
doi: 10.1007/s00018-012-1247-3
pubmed: 23283302
Maeda K, Anand K, Chiapparino A, Kumar A, Poletto M, Kaksonen M, et al. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature. 2013;501(7466):257–61. https://doi.org/10.1038/nature12430 .
doi: 10.1038/nature12430
pubmed: 23934110
Chung J, Torta F, Masai K, Lucast L, Czapla H, Tanner LB, et al. INTRACELLULAR TRANSPORT. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science. 2015;349(6246):428–32. https://doi.org/10.1126/science.aab1370 .
doi: 10.1126/science.aab1370
pubmed: 26206935
pmcid: 4638224
Ghai R, Du X, Wang H, Dong J, Ferguson C, Brown AJ, et al. ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P 2) and regulate its level at the plasma membrane. Nat Commun. 2017;8(1):757. https://doi.org/10.1038/s41467-017-00861-5 .
doi: 10.1038/s41467-017-00861-5
pubmed: 28970484
pmcid: 5624964
Tong J, Yang H, Yang H, Eom SH, Im YJ. Structure of Osh3 reveals a conserved mode of phosphoinositide binding in oxysterol-binding proteins. Structure. 2013;21(7):1203–13. https://doi.org/10.1016/j.str.2013.05.007 .
doi: 10.1016/j.str.2013.05.007
pubmed: 23791945
Rocha N, Kuijl C, van der Kant R, Janssen L, Houben D, Janssen H, et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. J Cell Biol. 2009;185(7):1209–25. https://doi.org/10.1083/jcb.200811005 .
doi: 10.1083/jcb.200811005
pubmed: 19564404
pmcid: 2712958
Zhao K, Ridgway ND. Oxysterol-binding protein-related protein 1L regulates cholesterol egress from the endo-lysosomal system. Cell Rep. 2017;19(9):1807–18. https://doi.org/10.1016/j.celrep.2017.05.028 .
doi: 10.1016/j.celrep.2017.05.028
pubmed: 28564600
Dong J, Du X, Wang H, Wang J, Lu C, Chen X, et al. Allosteric enhancement of ORP1-mediated cholesterol transport by PI(4,5)P2/PI(3,4)P2. Nat Commun. 2019;10(1):829. https://doi.org/10.1038/s41467-019-08791-0 .
doi: 10.1038/s41467-019-08791-0
pubmed: 30783101
pmcid: 6381110
Kawasaki A, Sakai A, Nakanishi H, Hasegawa J, Taguchi T, Sasaki J, et al. PI4P/PS countertransport by ORP10 at ER-endosome membrane contact sites regulates endosome fission. J Cell Biol. 2022;221(1):e202103141. https://doi.org/10.1083/jcb.202103141 .
doi: 10.1083/jcb.202103141
pubmed: 34817532
Olkkonen VM, Ikonen E. Cholesterol transport in the late endocytic pathway: roles of ORP family proteins. J Steroid Biochem Mol Biol. 2022;216:106040. https://doi.org/10.1016/j.jsbmb.2021.106040 .
doi: 10.1016/j.jsbmb.2021.106040
pubmed: 34864207
Wong LH, Martello A, Eden ER. Thank ORP9 for FFAT: With endosomal ORP10, it’s fission accomplished! J Cell Biol. 2022;221(1):e202112057. https://doi.org/10.1083/jcb.202112057 .
doi: 10.1083/jcb.202112057
pubmed: 34928309
Venditti R, Rega LR, Masone MC, Santoro M, Polishchuk E, Sarnataro D, et al. Molecular determinants of ER-Golgi contacts identified through a new FRET-FLIM system. J Cell Biol. 2019;218(3):1055–65. https://doi.org/10.1083/jcb.201812020 .
doi: 10.1083/jcb.201812020
pubmed: 30659100
pmcid: 6400564
Galmes R, Houcine A, van Vliet AR, Agostinis P, Jackson CL, Giordano F. ORP5/ORP8 localize to endoplasmic reticulum-mitochondria contacts and are involved in mitochondrial function. EMBO Rep. 2016;17(6):800–10. https://doi.org/10.15252/embr.201541108 .
doi: 10.15252/embr.201541108
pubmed: 27113756
pmcid: 5278607
Yeung T, Gilbert GE, Shi J, Silvius J, Kapus A, Grinstein S. Membrane phosphatidylserine regulates surface charge and protein localization. Science. 2008;319(5860):210–3. https://doi.org/10.1126/science.1152066 .
doi: 10.1126/science.1152066
pubmed: 18187657
Fairn GD, Schieber NL, Ariotti N, Murphy S, Kuerschner L, Webb RI, et al. High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine. J Cell Biol. 2011;194(2):257–75. https://doi.org/10.1083/jcb.201012028 .
doi: 10.1083/jcb.201012028
pubmed: 21788369
pmcid: 3144401
Eden ER, White IJ, Tsapara A, Futter CE. Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction. Nat Cell Biol. 2010;12(3):267–72. https://doi.org/10.1038/ncb2026 .
doi: 10.1038/ncb2026
pubmed: 20118922
Alpy F, Rousseau A, Schwab Y, Legueux F, Stoll I, Wendling C, et al. STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER. J Cell Sci. 2013;126(Pt 23):5500–12. https://doi.org/10.1242/jcs.139295 .
doi: 10.1242/jcs.139295
pubmed: 24105263
Raiborg C, Wenzel EM, Pedersen NM, Olsvik H, Schink KO, Schultz SW, et al. Repeated ER-endosome contacts promote endosome translocation and neurite outgrowth. Nature. 2015;520(7546):234–8. https://doi.org/10.1038/nature14359 .
doi: 10.1038/nature14359
pubmed: 25855459
Meneses-Salas E, Garcia-Melero A, Kanerva K, Blanco-Munoz P, Morales-Paytuvi F, Bonjoch J, et al. Annexin A6 modulates TBC1D15/Rab7/StARD3 axis to control endosomal cholesterol export in NPC1 cells. Cell Mol Life Sci. 2020;77(14):2839–57. https://doi.org/10.1007/s00018-019-03330-y .
doi: 10.1007/s00018-019-03330-y
pubmed: 31664461
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Annexins bridging the gap: novel roles in membrane contact site formation. Front Cell Dev Biol. 2021;9:797949. https://doi.org/10.3389/fcell.2021.797949 .
doi: 10.3389/fcell.2021.797949
pubmed: 35071237
van der Kant R, Neefjes J. Small regulators, major consequences – Ca(2)(+) and cholesterol at the endosome-ER interface. J Cell Sci. 2014;127(Pt 5):929–38. https://doi.org/10.1242/jcs.137539 .
doi: 10.1242/jcs.137539
pubmed: 24554437
Hirabayashi Y, Kwon SK, Paek H, Pernice WM, Paul MA, Lee J, et al. ER-mitochondria tethering by PDZD8 regulates Ca(2+) dynamics in mammalian neurons. Science. 2017;358(6363):623–30. https://doi.org/10.1126/science.aan6009 .
doi: 10.1126/science.aan6009
pubmed: 29097544
pmcid: 5818999
Pulli I, Lassila T, Pan G, Yan D, Olkkonen VM, Tornquist K. Oxysterol-binding protein related-proteins (ORPs) 5 and 8 regulate calcium signaling at specific cell compartments. Cell Calcium. 2018;72:62–9. https://doi.org/10.1016/j.ceca.2018.03.001 .
doi: 10.1016/j.ceca.2018.03.001
pubmed: 29748134
Arruda AP, Pers BM, Parlakgul G, Guney E, Inouye K, Hotamisligil GS. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med. 2014;20(12):1427–35. https://doi.org/10.1038/nm.3735 .
doi: 10.1038/nm.3735
pubmed: 25419710
pmcid: 4412031
Lipp NF, Ikhlef S, Milanini J, Drin G. Lipid exchangers: cellular functions and mechanistic links with phosphoinositide metabolism. Front Cell Dev Biol. 2020;8:663. https://doi.org/10.3389/fcell.2020.00663 .
doi: 10.3389/fcell.2020.00663
pubmed: 32793602
pmcid: 7385082
Del Bel LM, Brill JA. Sac1, a lipid phosphatase at the interface of vesicular and nonvesicular transport. Traffic. 2018;19(5):301–18. https://doi.org/10.1111/tra.12554 .
doi: 10.1111/tra.12554
pubmed: 29411923
Zewe JP, Wills RC, Sangappa S, Goulden BD, Hammond GR. SAC1 degrades its lipid substrate PtdIns4P in the endoplasmic reticulum to maintain a steep chemical gradient with donor membranes. elife. 2018;7:e35588. https://doi.org/10.7554/eLife.35588 .
doi: 10.7554/eLife.35588
pubmed: 29461204
pmcid: 5829913
Miliara X, Tatsuta T, Berry JL, Rouse SL, Solak K, Chorev DS, et al. Structural determinants of lipid specificity within Ups/PRELI lipid transfer proteins. Nat Commun. 2019;10(1):1130. https://doi.org/10.1038/s41467-019-09089-x .
doi: 10.1038/s41467-019-09089-x
pubmed: 30850607
pmcid: 6408443
Lees JA, Messa M, Sun EW, Wheeler H, Torta F, Wenk MR, et al. Lipid transport by TMEM24 at ER-plasma membrane contacts regulates pulsatile insulin secretion. Science. 2017;355(6326):eaah6171. https://doi.org/10.1126/science.aah6171 .
doi: 10.1126/science.aah6171
pubmed: 28209843
pmcid: 5414417
Silva BSC, DiGiovanni L, Kumar R, Carmichael RE, Kim PK, Schrader M. Maintaining social contacts: the physiological relevance of organelle interactions. Biochim Biophys Acta, Mol Cell Res. 1867;2020(11):118800. https://doi.org/10.1016/j.bbamcr.2020.118800 .
doi: 10.1016/j.bbamcr.2020.118800
Schroeder F, Huang H, McIntosh AL, Atshaves BP, Martin GG, Kier AB. Caveolin, sterol carrier protein-2, membrane cholesterol-rich microdomains and intracellular cholesterol trafficking. Subcell Biochem. 2010;51:279–318. https://doi.org/10.1007/978-90-481-8622-8_10 .
doi: 10.1007/978-90-481-8622-8_10
pubmed: 20213548
Foster CR, Satomi S, Kato Y, Patel HH. The caveolar-mitochondrial interface: regulation of cellular metabolism in physiology and pathophysiology. Biochem Soc Trans. 2020;48(1):165–77. https://doi.org/10.1042/BST20190388 .
doi: 10.1042/BST20190388
pubmed: 32010944
Pol A, Calvo M, Lu A, Enrich C. The "early-sorting" endocytic compartment of rat hepatocytes is involved in the intracellular pathway of caveolin-1 (VIP-21). Hepatology. 1999;29(6):1848–57. https://doi.org/10.1002/hep.510290602 .
doi: 10.1002/hep.510290602
pubmed: 10347129
Parton RG. Caveolae: structure, function, and relationship to disease. Annu Rev Cell Dev Biol. 2018;34:111–36. https://doi.org/10.1146/annurev-cellbio-100617-062737 .
doi: 10.1146/annurev-cellbio-100617-062737
pubmed: 30296391
Sala-Vila A, Navarro-Lerida I, Sanchez-Alvarez M, Bosch M, Calvo C, Lopez JA, et al. Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Sci Rep. 2016;6:27351. https://doi.org/10.1038/srep27351 .
doi: 10.1038/srep27351
pubmed: 27272971
pmcid: 4894368
Toselli M, Biella G, Taglietti V, Cazzaniga E, Parenti M. Caveolin-1 expression and membrane cholesterol content modulate N-type calcium channel activity in NG108-15 cells. Biophys J. 2005;89(4):2443–57. https://doi.org/10.1529/biophysj.105.065623 .
doi: 10.1529/biophysj.105.065623
pubmed: 16040758
pmcid: 1366744
Levitan I, Fang Y, Rosenhouse-Dantsker A, Romanenko V. Cholesterol and ion channels. Subcell Biochem. 2010;51:509–49. https://doi.org/10.1007/978-90-481-8622-8_19 .
doi: 10.1007/978-90-481-8622-8_19
pubmed: 20213557
pmcid: 2895485
Brownlow SL, Sage SO. Transient receptor potential protein subunit assembly and membrane distribution in human platelets. Thromb Haemost. 2005;94(4):839–45. https://doi.org/10.1160/TH05-06-0391 .
doi: 10.1160/TH05-06-0391
pubmed: 16270640
Enrich C, Rentero C, Hierro A, Grewal T. Role of cholesterol in SNARE-mediated trafficking on intracellular membranes. J Cell Sci. 2015;128(6):1071–81. https://doi.org/10.1242/jcs.164459 .
doi: 10.1242/jcs.164459
pubmed: 25653390
Reverter M, Rentero C, de Muga SV, Alvarez-Guaita A, Mulay V, Cairns R, et al. Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Mol Biol Cell. 2011;22(21):4108–23. https://doi.org/10.1091/mbc.E11-04-0332 .
doi: 10.1091/mbc.E11-04-0332
pubmed: 22039070
pmcid: 3204072
Reverter M, Rentero C, Garcia-Melero A, Hoque M, Vila de Muga S, Alvarez-Guaita A, et al. Cholesterol regulates syntaxin 6 trafficking at trans-Golgi network endosomal boundaries. Cell Rep. 2014;7(3):883–97. https://doi.org/10.1016/j.celrep.2014.03.043 .
doi: 10.1016/j.celrep.2014.03.043
pubmed: 24746815
Weber-Boyvat M, Trimbuch T, Shah S, Jantti J, Olkkonen VM, Rosenmund C. ORP/Osh mediate cross-talk between ER-plasma membrane contact site components and plasma membrane SNAREs. Cell Mol Life Sci. 2021;78(4):1689–708. https://doi.org/10.1007/s00018-020-03604-w .
doi: 10.1007/s00018-020-03604-w
pubmed: 32734583
Goebeler V, Poeter M, Zeuschner D, Gerke V, Rescher U. Annexin A8 regulates late endosome organization and function. Mol Biol Cell. 2008;19(12):5267–78. https://doi.org/10.1091/mbc.E08-04-0383 .
doi: 10.1091/mbc.E08-04-0383
pubmed: 18923148
pmcid: 2592647
Hayes MJ, Merrifield CJ, Shao D, Ayala-Sanmartin J, Schorey CD, Levine TP, et al. Annexin 2 binding to phosphatidylinositol 4,5-bisphosphate on endocytic vesicles is regulated by the stress response pathway. J Biol Chem. 2004;279(14):14157–64. https://doi.org/10.1074/jbc.M313025200 .
doi: 10.1074/jbc.M313025200
pubmed: 14734570
Gerke V, Moss SE. Annexins and membrane dynamics. Biochim Biophys Acta. 1997;1357(2):129–54. https://doi.org/10.1016/s0167-4889(97)00038-4 .
doi: 10.1016/s0167-4889(97)00038-4
pubmed: 9223619
Hulce JJ, Cognetta AB, Niphakis MJ, Tully SE, Cravatt BF. Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat Methods. 2013;10(3):259–64. https://doi.org/10.1038/nmeth.2368 .
doi: 10.1038/nmeth.2368
pubmed: 23396283
pmcid: 3601559
Heitzig N, Kuhnl A, Grill D, Ludewig K, Schloer S, Galla HJ, et al. Cooperative binding promotes demand-driven recruitment of AnxA8 to cholesterol-containing membranes. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(4):349–58. https://doi.org/10.1016/j.bbalip.2018.01.001 .
doi: 10.1016/j.bbalip.2018.01.001
pubmed: 29306076
Ayala-Sanmartin J, Henry JP, Pradel LA. Cholesterol regulates membrane binding and aggregation by annexin 2 at submicromolar Ca(2+) concentration. Biochim Biophys Acta. 2001;1510(1–2):18–28. https://doi.org/10.1016/s0005-2736(00)00262-5 .
doi: 10.1016/s0005-2736(00)00262-5
pubmed: 11342144
Rentero C, Blanco-Munoz P, Meneses-Salas E, Grewal T, Enrich C. Annexins-Coordinators of Cholesterol Homeostasis in Endocytic Pathways. Int J Mol Sci. 2018;19(5):1444. https://doi.org/10.3390/ijms19051444 .
doi: 10.3390/ijms19051444
pubmed: 29757220
pmcid: 5983649
Eden ER, Sanchez-Heras E, Tsapara A, Sobota A, Levine TP, Futter CE. Annexin A1 tethers membrane contact sites that mediate ER to endosome cholesterol transport. Dev Cell. 2016;37(5):473–83. https://doi.org/10.1016/j.devcel.2016.05.005 .
doi: 10.1016/j.devcel.2016.05.005
pubmed: 27270042
pmcid: 4906250
Enrich C, Rentero C, Grewal T, Futter CE, Eden ER. Cholesterol overload: contact sites to the rescue! Contact (Thousand Oaks). 2019;2:2515256419893507. https://doi.org/10.1177/2515256419893507 .
doi: 10.1177/2515256419893507
pubmed: 31858076
Martello A, Platt FM, Eden ER. Staying in touch with the endocytic network: the importance of contacts for cholesterol transport. Traffic. 2020;21(5):354–63. https://doi.org/10.1111/tra.12726 .
doi: 10.1111/tra.12726
pubmed: 32129938
pmcid: 8650999
Pons M, Ihrke G, Koch S, Biermer M, Pol A, Grewal T, et al. Late endocytic compartments are major sites of annexin VI localization in NRK fibroblasts and polarized WIF-B hepatoma cells. Exp Cell Res. 2000;257(1):33–47. https://doi.org/10.1006/excr.2000.4861 .
doi: 10.1006/excr.2000.4861
pubmed: 10854052
Liao YC, Fernandopulle MS, Wang G, Choi H, Hao L, Drerup CM, et al. RNA granules hitchhike on lysosomes for long-distance transport, using Annexin A11 as a molecular tether. Cell. 2019;179(1):147–64. e20. https://doi.org/10.1016/j.cell.2019.08.050 .
doi: 10.1016/j.cell.2019.08.050
pubmed: 31539493
pmcid: 6890474
White IJ, Bailey LM, Aghakhani MR, Moss SE, Futter CE. EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J. 2006;25(1):1–12. https://doi.org/10.1038/sj.emboj.7600759 .
doi: 10.1038/sj.emboj.7600759
pubmed: 16052208
Raiborg C, Stenmark H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature. 2009;458(7237):445–52. https://doi.org/10.1038/nature07961 .
doi: 10.1038/nature07961
pubmed: 19325624
Ehrlich LS, Medina GN, Photiadis S, Whittredge PB, Watanabe S, Taraska JW, et al. Tsg101 regulates PI(4,5)P2/Ca(2+) signaling for HIV-1 Gag assembly. Front Microbiol. 2014;5:234. https://doi.org/10.3389/fmicb.2014.00234 .
doi: 10.3389/fmicb.2014.00234
pubmed: 24904548
pmcid: 4033031
Du X, Kazim AS, Brown AJ, Yang H. An essential role of Hrs/Vps27 in endosomal cholesterol trafficking. Cell Rep. 2012;1(1):29–35. https://doi.org/10.1016/j.celrep.2011.10.004 .
doi: 10.1016/j.celrep.2011.10.004
pubmed: 22832105
Futter CE, Felder S, Schlessinger J, Ullrich A, Hopkins CR. Annexin I is phosphorylated in the multivesicular body during the processing of the epidermal growth factor receptor. J Cell Biol. 1993;120(1):77–83. https://doi.org/10.1083/jcb.120.1.77 .
doi: 10.1083/jcb.120.1.77
pubmed: 8093248
Mayran N, Parton RG, Gruenberg J. Annexin II regulates multivesicular endosome biogenesis in the degradation pathway of animal cells. EMBO J. 2003;22(13):3242–53. https://doi.org/10.1093/emboj/cdg321 .
doi: 10.1093/emboj/cdg321
pubmed: 12839987
pmcid: 165635
Grill D, Matos ALL, de Vries WC, Kudruk S, Heflik M, Dorner W, et al. Bridging of membrane surfaces by annexin A2. Sci Rep. 2018;8(1):14662. https://doi.org/10.1038/s41598-018-33044-3 .
doi: 10.1038/s41598-018-33044-3
pubmed: 30279443
pmcid: 6168566
Berg Klenow M, Iversen C, Wendelboe Lund F, Mularski A, Busk Heitmann AS, Dias C, et al. Annexins A1 and A2 accumulate and are immobilized at cross-linked membrane-membrane interfaces. Biochemistry. 2021;60(16):1248–59. https://doi.org/10.1021/acs.biochem.1c00126 .
doi: 10.1021/acs.biochem.1c00126
pubmed: 33861586
Illien F, Piao HR, Coue M, di Marco C, Ayala-Sanmartin J. Lipid organization regulates annexin A2 Ca(2+)-sensitivity for membrane bridging and its modulator effects on membrane fluidity. Biochim Biophys Acta. 2012;1818(11):2892–900. https://doi.org/10.1016/j.bbamem.2012.07.012 .
doi: 10.1016/j.bbamem.2012.07.012
pubmed: 22842545
Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol. 2008;9(2):125–38. https://doi.org/10.1038/nrm2336 .
doi: 10.1038/nrm2336
pubmed: 18216769
Luo J, Jiang L, Yang H, Song BL. Routes and mechanisms of post-endosomal cholesterol trafficking: a story that never ends. Traffic. 2017;18(4):209–17. https://doi.org/10.1111/tra.12471 .
doi: 10.1111/tra.12471
pubmed: 28191915
Garcia-Melero A, Reverter M, Hoque M, Meneses-Salas E, Koese M, Conway JR, et al. Annexin A6 and late endosomal cholesterol modulate integrin recycling and cell migration. J Biol Chem. 2016;291(3):1320–35. https://doi.org/10.1074/jbc.M115.683557 .
doi: 10.1074/jbc.M115.683557
pubmed: 26578516
Cubells L, Vila de Muga S, Tebar F, Wood P, Evans R, Ingelmo-Torres M, et al. Annexin A6-induced alterations in cholesterol transport and caveolin export from the Golgi complex. Traffic. 2007;8(11):1568–89. https://doi.org/10.1111/j.1600-0854.2007.00640.x .
doi: 10.1111/j.1600-0854.2007.00640.x
pubmed: 17822395
pmcid: 3003291
Yang ST, Kreutzberger AJB, Lee J, Kiessling V, Tamm LK. The role of cholesterol in membrane fusion. Chem Phys Lipids. 2016;199:136–43. https://doi.org/10.1016/j.chemphyslip.2016.05.003 .
doi: 10.1016/j.chemphyslip.2016.05.003
pubmed: 27179407
pmcid: 4972649
Cornely R, Rentero C, Enrich C, Grewal T, Gaus K. Annexin A6 is an organizer of membrane microdomains to regulate receptor localization and signalling. IUBMB Life. 2011;63(11):1009–17. https://doi.org/10.1002/iub.540 .
doi: 10.1002/iub.540
pubmed: 21990038
Urano Y, Watanabe H, Murphy SR, Shibuya Y, Geng Y, Peden AA, et al. Transport of LDL-derived cholesterol from the NPC1 compartment to the ER involves the trans-Golgi network and the SNARE protein complex. Proc Natl Acad Sci U S A. 2008;105(43):16513–8. https://doi.org/10.1073/pnas.0807450105 .
doi: 10.1073/pnas.0807450105
pubmed: 18946045
pmcid: 2575451
Umbrecht-Jenck E, Demais V, Calco V, Bailly Y, Bader MF, Chasserot-Golaz S. S100A10-mediated translocation of annexin-A2 to SNARE proteins in adrenergic chromaffin cells undergoing exocytosis. Traffic. 2010;11(7):958–71. https://doi.org/10.1111/j.1600-0854.2010.01065.x .
doi: 10.1111/j.1600-0854.2010.01065.x
pubmed: 20374557
Domon MM, Besson F, Tylki-Szymanska A, Bandorowicz-Pikula J, Pikula S. Interaction of AnxA6 with isolated and artificial lipid microdomains; importance of lipid composition and calcium content. Mol BioSyst. 2013;9(4):668–76. https://doi.org/10.1039/c3mb25487a .
doi: 10.1039/c3mb25487a
pubmed: 23360953
Alvarez-Guaita A, Vila de Muga S, Owen DM, Williamson D, Magenau A, Garcia-Melero A, et al. Evidence for annexin A6-dependent plasma membrane remodelling of lipid domains. Br J Pharmacol. 2015;172(7):1677–90. https://doi.org/10.1111/bph.13022 .
doi: 10.1111/bph.13022
pubmed: 25409976
pmcid: 4376448
Zhang L, Mao YS, Janmey PA, Yin HL. Phosphatidylinositol 4, 5 bisphosphate and the actin cytoskeleton. Subcell Biochem. 2012;59:177–215. https://doi.org/10.1007/978-94-007-3015-1_6 .
doi: 10.1007/978-94-007-3015-1_6
pubmed: 22374091
Sztolsztener ME, Dobrzyn A, Pikula S, Tylki-Szymanska A, Bandorowicz-Pikula J. Impaired dynamics of the late endosome/lysosome compartment in human Niemann-Pick type C skin fibroblasts carrying mutation in NPC1 gene. Mol BioSyst. 2012;8(4):1197–205. https://doi.org/10.1039/c2mb05447g .
doi: 10.1039/c2mb05447g
pubmed: 22286891
Choudhury A, Dominguez M, Puri V, Sharma DK, Narita K, Wheatley CL, et al. Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. J Clin Invest. 2002;109(12):1541–50. https://doi.org/10.1172/JCI15420 .
doi: 10.1172/JCI15420
pubmed: 12070301
pmcid: 151017
Raiborg C, Wenzel EM, Stenmark H. ER-endosome contact sites: molecular compositions and functions. EMBO J. 2015;34(14):1848–58. https://doi.org/10.15252/embj.201591481 .
doi: 10.15252/embj.201591481
pubmed: 26041457
pmcid: 4547891
Wong YC, Ysselstein D, Krainc D. Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature. 2018;554(7692):382–6. https://doi.org/10.1038/nature25486 .
doi: 10.1038/nature25486
pubmed: 29364868
pmcid: 6209448
Jose J, Hoque M, Engel J, Beevi SS, Wahba M, Georgieva MI, et al. Annexin A6 and NPC1 regulate LDL-inducible cell migration and distribution of focal adhesions. Sci Rep. 2022;12(1):596. https://doi.org/10.1038/s41598-021-04584-y .
doi: 10.1038/s41598-021-04584-y
pubmed: 35022465
pmcid: 8755831
Kanerva K, Uronen RL, Blom T, Li S, Bittman R, Lappalainen P, et al. LDL cholesterol recycles to the plasma membrane via a Rab8a-Myosin5b-actin-dependent membrane transport route. Dev Cell. 2013;27(3):249–62. https://doi.org/10.1016/j.devcel.2013.09.016 .
doi: 10.1016/j.devcel.2013.09.016
pubmed: 24209575
Takahashi K, Kanerva K, Vanharanta L, Almeida-Souza L, Lietha D, Olkkonen VM, et al. ORP2 couples LDL-cholesterol transport to FAK activation by endosomal cholesterol/PI(4,5)P2 exchange. EMBO J. 2021;40(14):e106871. https://doi.org/10.15252/embj.2020106871 .
doi: 10.15252/embj.2020106871
pubmed: 34124795
pmcid: 8281050
Meneses-Salas E, Garcia-Melero A, Blanco-Munoz P, Jose J, Brenner MS, Lu A, et al. Selective degradation permits a feedback loop controlling annexin A6 and cholesterol levels in endolysosomes of NPC1 mutant cells. Cells. 2020;9(5):1152. https://doi.org/10.3390/cells9051152 .
doi: 10.3390/cells9051152
pubmed: 32392809
pmcid: 7291204
Hoglinger D, Burgoyne T, Sanchez-Heras E, Hartwig P, Colaco A, Newton J, et al. NPC1 regulates ER contacts with endocytic organelles to mediate cholesterol egress. Nat Commun. 2019;10(1):4276. https://doi.org/10.1038/s41467-019-12152-2 .
doi: 10.1038/s41467-019-12152-2
pubmed: 31537798
pmcid: 6753064
Bharadwaj A, Bydoun M, Holloway R, Waisman D. Annexin A2 heterotetramer: structure and function. Int J Mol Sci. 2013;14(3):6259–305. https://doi.org/10.3390/ijms14036259 .
doi: 10.3390/ijms14036259
pubmed: 23519104
pmcid: 3634455
Hayes MJ, Rescher U, Gerke V, Moss SE. Annexin-actin interactions. Traffic. 2004;5(8):571–6. https://doi.org/10.1111/j.1600-0854.2004.00210.x .
doi: 10.1111/j.1600-0854.2004.00210.x
pubmed: 15260827
Rescher U, Gerke V. Annexins--unique membrane binding proteins with diverse functions. J Cell Sci. 2004;117(Pt 13):2631–9. https://doi.org/10.1242/jcs.01245 .
doi: 10.1242/jcs.01245
pubmed: 15169834
Rescher U, Gerke V. S100A10/p11: family, friends and functions. Pflugers Arch. 2008;455(4):575–82. https://doi.org/10.1007/s00424-007-0313-4 .
doi: 10.1007/s00424-007-0313-4
pubmed: 17638009
Hessner F, Dlugos CP, Chehab T, Schaefer C, Homey B, Gerke V, et al. CC chemokine receptor 10 cell surface presentation in melanocytes is regulated by the novel interaction partner S100A10. Sci Rep. 2016;6:22649. https://doi.org/10.1038/srep22649 .
doi: 10.1038/srep22649
pubmed: 26941067
pmcid: 4778132
Drucker P, Pejic M, Galla HJ, Gerke V. Lipid segregation and membrane budding induced by the peripheral membrane binding protein annexin A2. J Biol Chem. 2013;288(34):24764–76. https://doi.org/10.1074/jbc.M113.474023 .
doi: 10.1074/jbc.M113.474023
pubmed: 23861394
pmcid: 3750172
Chasserot-Golaz S, Vitale N, Sagot I, Delouche B, Dirrig S, Pradel LA, et al. Annexin II in exocytosis: catecholamine secretion requires the translocation of p36 to the subplasmalemmal region in chromaffin cells. J Cell Biol. 1996;133(6):1217–36. https://doi.org/10.1083/jcb.133.6.1217 .
doi: 10.1083/jcb.133.6.1217
pubmed: 8682860
Rintala-Dempsey AC, Rezvanpour A, Shaw GS. S100-annexin complexes–structural insights. FEBS J. 2008;275(20):4956–66. https://doi.org/10.1111/j.1742-4658.2008.06654.x .
doi: 10.1111/j.1742-4658.2008.06654.x
pubmed: 18795951
Miwa N, Uebi T, Kawamura S. S100-annexin complexes–biology of conditional association. FEBS J. 2008;275(20):4945–55. https://doi.org/10.1111/j.1742-4658.2008.06653.x .
doi: 10.1111/j.1742-4658.2008.06653.x
pubmed: 18795952
Zobiack N, Rescher U, Ludwig C, Zeuschner D, Gerke V. The annexin 2/S100A10 complex controls the distribution of transferrin receptor-containing recycling endosomes. Mol Biol Cell. 2003;14(12):4896–908. https://doi.org/10.1091/mbc.e03-06-0387 .
doi: 10.1091/mbc.e03-06-0387
pubmed: 13679511
pmcid: 284793
Poeter M, Brandherm I, Rossaint J, Rosso G, Shahin V, Skryabin BV, et al. Annexin A8 controls leukocyte recruitment to activated endothelial cells via cell surface delivery of CD63. Nat Commun. 2014;5:3738. https://doi.org/10.1038/ncomms4738 .
doi: 10.1038/ncomms4738
pubmed: 24769558
Ayala-Sanmartin J. Cholesterol enhances phospholipid binding and aggregation of annexins by their core domain. Biochem Biophys Res Commun. 2001;283(1):72–9. https://doi.org/10.1006/bbrc.2001.4748 .
doi: 10.1006/bbrc.2001.4748
pubmed: 11322769
de Diego I, Schwartz F, Siegfried H, Dauterstedt P, Heeren J, Beisiegel U, et al. Cholesterol modulates the membrane binding and intracellular distribution of annexin 6. J Biol Chem. 2002;277(35):32187–94. https://doi.org/10.1074/jbc.M205499200 .
doi: 10.1074/jbc.M205499200
pubmed: 12070178
Bonifacino JS, Neefjes J. Moving and positioning the endolysosomal system. Curr Opin Cell Biol. 2017;47:1–8. https://doi.org/10.1016/j.ceb.2017.01.008 .
doi: 10.1016/j.ceb.2017.01.008
pubmed: 28231489
pmcid: 5537022
Maxfield FR, McGraw TE. Endocytic recycling. Nat Rev Mol Cell Biol. 2004;5(2):121–32. https://doi.org/10.1038/nrm1315 .
doi: 10.1038/nrm1315
pubmed: 15040445
Cullen PJ, Steinberg F. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol. 2018;19(11):679–96. https://doi.org/10.1038/s41580-018-0053-7 .
doi: 10.1038/s41580-018-0053-7
pubmed: 30194414
Christ L, Raiborg C, Wenzel EM, Campsteijn C, Stenmark H. Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Biochem Sci. 2017;42(1):42–56. https://doi.org/10.1016/j.tibs.2016.08.016 .
doi: 10.1016/j.tibs.2016.08.016
pubmed: 27669649
McNally KE, Cullen PJ. Endosomal retrieval of cargo: Retromer is not alone. Trends Cell Biol. 2018;28(10):807–22. https://doi.org/10.1016/j.tcb.2018.06.005 .
doi: 10.1016/j.tcb.2018.06.005
pubmed: 30072228
Wallroth A, Haucke V. Phosphoinositide conversion in endocytosis and the endolysosomal system. J Biol Chem. 2018;293(5):1526–35. https://doi.org/10.1074/jbc.R117.000629 .
doi: 10.1074/jbc.R117.000629
pubmed: 29282290
Ketel K, Krauss M, Nicot AS, Puchkov D, Wieffer M, Muller R, et al. A phosphoinositide conversion mechanism for exit from endosomes. Nature. 2016;529(7586):408–12. https://doi.org/10.1038/nature16516 .
doi: 10.1038/nature16516
pubmed: 26760201
Henmi Y, Morikawa Y, Oe N, Ikeda N, Fujita A, Takei K, et al. PtdIns4KIIalpha generates endosomal PtdIns(4)P and is required for receptor sorting at early endosomes. Mol Biol Cell. 2016;27(6):990–1001. https://doi.org/10.1091/mbc.E15-08-0564 .
doi: 10.1091/mbc.E15-08-0564
pubmed: 26823017
pmcid: 4791142
Brown FD, Rozelle AL, Yin HL, Balla T, Donaldson JG. Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J Cell Biol. 2001;154(5):1007–17. https://doi.org/10.1083/jcb.200103107 .
doi: 10.1083/jcb.200103107
pubmed: 11535619
pmcid: 2196179
D’Angelo G, Vicinanza M, Di Campli A, De Matteis MA. The multiple roles of PtdIns(4)P – not just the precursor of PtdIns(4,5)P2. J Cell Sci. 2008;121(Pt 12):1955–63. https://doi.org/10.1242/jcs.023630 .
doi: 10.1242/jcs.023630
pubmed: 18525025
Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol. 2009;10(9):597–608. https://doi.org/10.1038/nrm2755 .
doi: 10.1038/nrm2755
pubmed: 19696797
pmcid: 3038567
Jovic M, Kieken F, Naslavsky N, Sorgen PL, Caplan S. Eps15 homology domain 1-associated tubules contain phosphatidylinositol-4-phosphate and phosphatidylinositol-(4,5)-bisphosphate and are required for efficient recycling. Mol Biol Cell. 2009;20(11):2731–43. https://doi.org/10.1091/mbc.E08-11-1102 .
doi: 10.1091/mbc.E08-11-1102
pubmed: 19369419
pmcid: 2688552
Cullen PJ, Carlton JG. Phosphoinositides in the mammalian endo-lysosomal network. Subcell Biochem. 2012;59:65–110. https://doi.org/10.1007/978-94-007-3015-1_3 .
doi: 10.1007/978-94-007-3015-1_3
pubmed: 22374088
pmcid: 4052210
Fraldi A, Annunziata F, Lombardi A, Kaiser HJ, Medina DL, Spampanato C, et al. Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders. EMBO J. 2010;29(21):3607–20. https://doi.org/10.1038/emboj.2010.237 .
doi: 10.1038/emboj.2010.237
pubmed: 20871593
pmcid: 2982760
Wheeler S, Schmid R, Sillence DJ. Lipid(-)protein interactions in niemann(-)pick type C disease: insights from molecular modeling. Int J Mol Sci. 2019;20(3):717. https://doi.org/10.3390/ijms20030717 .
doi: 10.3390/ijms20030717
pubmed: 30736449
pmcid: 6387118
Tebar F, Villalonga P, Sorkina T, Agell N, Sorkin A, Enrich C. Calmodulin regulates intracellular trafficking of epidermal growth factor receptor and the MAPK signaling pathway. Mol Biol Cell. 2002;13(6):2057–68. https://doi.org/10.1091/mbc.01-12-0571 .
doi: 10.1091/mbc.01-12-0571
pubmed: 12058069
pmcid: 117624
Zilly FE, Halemani ND, Walrafen D, Spitta L, Schreiber A, Jahn R, et al. Ca
doi: 10.1038/emboj.2011.53
pubmed: 21364530
pmcid: 3094119
Jackle S, Runquist E, Brady S, Hamilton RL, Havel RJ. Isolation and characterization of three endosomal fractions from the liver of normal rats after lipoprotein loading. J Lipid Res. 1991;32(3):485–98.
doi: 10.1016/S0022-2275(20)42072-3
pubmed: 2066677
Jackle S, Runquist EA, Miranda-Brady S, Havel RJ. Trafficking of the epidermal growth factor receptor and transferrin in three hepatocytic endosomal fractions. J Biol Chem. 1991;266(3):1396–402.
doi: 10.1016/S0021-9258(18)52307-3
pubmed: 1671034
Waugh MG. Raft-like membranes from the trans-Golgi network and endosomal compartments. Nat Protoc. 2013;8(12):2429–39. https://doi.org/10.1038/nprot.2013.148 .
doi: 10.1038/nprot.2013.148
pubmed: 24202556
Morgan AJ, Platt FM, Lloyd-Evans E, Galione A. Molecular mechanisms of endolysosomal Ca
doi: 10.1042/BJ20110949
pubmed: 21992097
Gomez TS, Billadeau DD. A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev Cell. 2009;17(5):699–711. https://doi.org/10.1016/j.devcel.2009.09.009 .
doi: 10.1016/j.devcel.2009.09.009
pubmed: 19922874
pmcid: 2803077
Tu Y, Seaman MNJ. Navigating the controversies of Retromer-mediated endosomal protein sorting. Front Cell Dev Biol. 2021;9:658741. https://doi.org/10.3389/fcell.2021.658741 .
doi: 10.3389/fcell.2021.658741
pubmed: 34222232
pmcid: 8247582
Wang S, Bellen HJ. The retromer complex in development and disease. Development. 2015;142(14):2392–6. https://doi.org/10.1242/dev.123737 .
doi: 10.1242/dev.123737
pubmed: 26199408
pmcid: 4510866
Rojas R, van Vlijmen T, Mardones GA, Prabhu Y, Rojas AL, Mohammed S, et al. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J Cell Biol. 2008;183(3):513–26. https://doi.org/10.1083/jcb.200804048 .
doi: 10.1083/jcb.200804048
pubmed: 18981234
pmcid: 2575791
Deinhardt K, Salinas S, Verastegui C, Watson R, Worth D, Hanrahan S, et al. Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron. 2006;52(2):293–305. https://doi.org/10.1016/j.neuron.2006.08.018 .
doi: 10.1016/j.neuron.2006.08.018
pubmed: 17046692
Rowland AA, Chitwood PJ, Phillips MJ, Voeltz GK. ER contact sites define the position and timing of endosome fission. Cell. 2014;159(5):1027–41. https://doi.org/10.1016/j.cell.2014.10.023 .
doi: 10.1016/j.cell.2014.10.023
pubmed: 25416943
pmcid: 4634643
Wenzel EM, Schultz SW, Schink KO, Pedersen NM, Nahse V, Carlson A, et al. Concerted ESCRT and clathrin recruitment waves define the timing and morphology of intraluminal vesicle formation. Nat Commun. 2018;9(1):2932. https://doi.org/10.1038/s41467-018-05345-8 .
doi: 10.1038/s41467-018-05345-8
pubmed: 30050131
pmcid: 6062606
Raiborg C, Wesche J, Malerod L, Stenmark H. Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding Hrs in dynamic microdomains. J Cell Sci. 2006;119(Pt 12):2414–24. https://doi.org/10.1242/jcs.02978 .
doi: 10.1242/jcs.02978
pubmed: 16720641
Campa CC, Margaria JP, Derle A, Del Giudice M, De Santis MC, Gozzelino L, et al. Rab11 activity and PtdIns(3)P turnover removes recycling cargo from endosomes. Nat Chem Biol. 2018;14(8):801–10. https://doi.org/10.1038/s41589-018-0086-4 .
doi: 10.1038/s41589-018-0086-4
pubmed: 29915378
Zhang X, Orlando K, He B, Xi F, Zhang J, Zajac A, et al. Membrane association and functional regulation of Sec3 by phospholipids and Cdc42. J Cell Biol. 2008;180(1):145–58. https://doi.org/10.1083/jcb.200704128 .
doi: 10.1083/jcb.200704128
pubmed: 18195105
pmcid: 2213614
Liu J, Zuo X, Yue P, Guo W. Phosphatidylinositol 4,5-bisphosphate mediates the targeting of the exocyst to the plasma membrane for exocytosis in mammalian cells. Mol Biol Cell. 2007;18(11):4483–92. https://doi.org/10.1091/mbc.e07-05-0461 .
doi: 10.1091/mbc.e07-05-0461
pubmed: 17761530
pmcid: 2043555
Ling K, Bairstow SF, Carbonara C, Turbin DA, Huntsman DG, Anderson RA. Type I gamma phosphatidylinositol phosphate kinase modulates adherens junction and E-cadherin trafficking via a direct interaction with mu 1B adaptin. J Cell Biol. 2007;176(3):343–53. https://doi.org/10.1083/jcb.200606023 .
doi: 10.1083/jcb.200606023
pubmed: 17261850
pmcid: 2063960
He B, Xi F, Zhang X, Zhang J, Guo W. Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J. 2007;26(18):4053–65. https://doi.org/10.1038/sj.emboj.7601834 .
doi: 10.1038/sj.emboj.7601834
pubmed: 17717527
pmcid: 2230670
Kim S, Kim H, Chang B, Ahn N, Hwang S, Di Paolo G, et al. Regulation of transferrin recycling kinetics by PtdIns[4,5]P2 availability. FASEB J. 2006;20(13):2399–401. https://doi.org/10.1096/fj.05-4621fje .
doi: 10.1096/fj.05-4621fje
pubmed: 17012244
Tan X, Thapa N, Choi S, Anderson RA. Emerging roles of PtdIns(4,5)P2–beyond the plasma membrane. J Cell Sci. 2015;128(22):4047–56. https://doi.org/10.1242/jcs.175208 .
doi: 10.1242/jcs.175208
pubmed: 26574506
pmcid: 4712784
Zimmermann P, Zhang Z, Degeest G, Mortier E, Leenaerts I, Coomans C, et al. Syndecan recycling [corrected] is controlled by syntenin-PIP2 interaction and Arf6. Dev Cell. 2005;9(3):377–88. https://doi.org/10.1016/j.devcel.2005.07.011 .
doi: 10.1016/j.devcel.2005.07.011
pubmed: 16139226
Lambaerts K, Van Dyck S, Mortier E, Ivarsson Y, Degeest G, Luyten A, et al. Syntenin, a syndecan adaptor and an Arf6 phosphatidylinositol 4,5-bisphosphate effector, is essential for epiboly and gastrulation cell movements in zebrafish. J Cell Sci. 2012;125(Pt 5):1129–40. https://doi.org/10.1242/jcs.089987 .
doi: 10.1242/jcs.089987
pubmed: 22399807
pmcid: 3656617
Schweitzer JK, Sedgwick AE, D’Souza-Schorey C. ARF6-mediated endocytic recycling impacts cell movement, cell division and lipid homeostasis. Semin Cell Dev Biol. 2011;22(1):39–47. https://doi.org/10.1016/j.semcdb.2010.09.002 .
doi: 10.1016/j.semcdb.2010.09.002
pubmed: 20837153
Allaire PD, Seyed Sadr M, Chaineau M, Seyed Sadr E, Konefal S, Fotouhi M, et al. Interplay between Rab35 and Arf6 controls cargo recycling to coordinate cell adhesion and migration. J Cell Sci. 2013;126(Pt 3):722–31. https://doi.org/10.1242/jcs.112375 .
doi: 10.1242/jcs.112375
pubmed: 23264734
Xiong X, Xu Q, Huang Y, Singh RD, Anderson R, Leof E, et al. An association between type Igamma PI4P 5-kinase and Exo70 directs E-cadherin clustering and epithelial polarization. Mol Biol Cell. 2012;23(1):87–98. https://doi.org/10.1091/mbc.E11-05-0449 .
doi: 10.1091/mbc.E11-05-0449
pubmed: 22049025
pmcid: 3248907
Thapa N, Sun Y, Schramp M, Choi S, Ling K, Anderson RA. Phosphoinositide signaling regulates the exocyst complex and polarized integrin trafficking in directionally migrating cells. Dev Cell. 2012;22(1):116–30. https://doi.org/10.1016/j.devcel.2011.10.030 .
doi: 10.1016/j.devcel.2011.10.030
pubmed: 22264730
pmcid: 3266520
Chen D, Yang C, Liu S, Hang W, Wang X, Chen J, et al. SAC-1 ensures epithelial endocytic recycling by restricting ARF-6 activity. J Cell Biol. 2018;217(6):2121–39. https://doi.org/10.1083/jcb.201711065 .
doi: 10.1083/jcb.201711065
pubmed: 29563216
pmcid: 5987724
Shi A, Liu O, Koenig S, Banerjee R, Chen CC, Eimer S, et al. RAB-10-GTPase-mediated regulation of endosomal phosphatidylinositol-4,5-bisphosphate. Proc Natl Acad Sci U S A. 2012;109(35):E2306–15. https://doi.org/10.1073/pnas.1205278109 .
doi: 10.1073/pnas.1205278109
pubmed: 22869721
pmcid: 3435156
Farmer T, Xie S, Naslavsky N, Stockli J, James DE, Caplan S. Defining the protein and lipid constituents of tubular recycling endosomes. J Biol Chem. 2021;296:100190. https://doi.org/10.1074/jbc.RA120.015992 .
doi: 10.1074/jbc.RA120.015992
pubmed: 33334886
pmcid: 7948492
Etoh K, Fukuda M. Rab10 regulates tubular endosome formation through KIF13A and KIF13B motors. J Cell Sci. 2019;132(5):jcs226977. https://doi.org/10.1242/jcs.226977 .
doi: 10.1242/jcs.226977
pubmed: 30700496
Wang P, Liu H, Wang Y, Liu O, Zhang J, Gleason A, et al. RAB-10 promotes EHBP-1 bridging of filamentous actin and tubular recycling endosomes. PLoS Genet. 2016;12(6):e1006093. https://doi.org/10.1371/journal.pgen.1006093 .
doi: 10.1371/journal.pgen.1006093
pubmed: 27272733
pmcid: 4894640
Mobius W, van Donselaar E, Ohno-Iwashita Y, Shimada Y, Heijnen HF, Slot JW, et al. Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. Traffic. 2003;4(4):222–31. https://doi.org/10.1034/j.1600-0854.2003.00072.x .
doi: 10.1034/j.1600-0854.2003.00072.x
pubmed: 12694561
Hao M, Lin SX, Karylowski OJ, Wustner D, McGraw TE, Maxfield FR. Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle. J Biol Chem. 2002;277(1):609–17. https://doi.org/10.1074/jbc.M108861200 .
doi: 10.1074/jbc.M108861200
pubmed: 11682487
Sobajima T, Yoshimura SI, Maeda T, Miyata H, Miyoshi E, Harada A. The Rab11-binding protein RELCH/KIAA1468 controls intracellular cholesterol distribution. J Cell Biol. 2018;217(5):1777–96. https://doi.org/10.1083/jcb.201709123 .
doi: 10.1083/jcb.201709123
pubmed: 29514919
pmcid: 5940305
Mesmin B, Pipalia NH, Lund FW, Ramlall TF, Sokolov A, Eliezer D, et al. STARD4 abundance regulates sterol transport and sensing. Mol Biol Cell. 2011;22(21):4004–15. https://doi.org/10.1091/mbc.E11-04-0372 .
doi: 10.1091/mbc.E11-04-0372
pubmed: 21900492
pmcid: 3204063
Garbarino J, Pan M, Chin HF, Lund FW, Maxfield FR, Breslow JL. STARD4 knockdown in HepG2 cells disrupts cholesterol trafficking associated with the plasma membrane, ER, and ERC. J Lipid Res. 2012;53(12):2716–25. https://doi.org/10.1194/jlr.M032227 .
doi: 10.1194/jlr.M032227
pubmed: 23033213
pmcid: 3494245
Iaea DB, Mao S, Lund FW, Maxfield FR. Role of STARD4 in sterol transport between the endocytic recycling compartment and the plasma membrane. Mol Biol Cell. 2017;28(8):1111–22. https://doi.org/10.1091/mbc.E16-07-0499 .
doi: 10.1091/mbc.E16-07-0499
pubmed: 28209730
pmcid: 5391187
Iaea DB, Spahr ZR, Singh RK, Chan RB, Zhou B, Bareja R, et al. Stable reduction of STARD4 alters cholesterol regulation and lipid homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids. 1865;2020(4):158609. https://doi.org/10.1016/j.bbalip.2020.158609 .
doi: 10.1016/j.bbalip.2020.158609
Gagescu R, Demaurex N, Parton RG, Hunziker W, Huber LA, Gruenberg J. The recycling endosome of Madin-Darby canine kidney cells is a mildly acidic compartment rich in raft components. Mol Biol Cell. 2000;11(8):2775–91. https://doi.org/10.1091/mbc.11.8.2775 .
doi: 10.1091/mbc.11.8.2775
pubmed: 10930469
pmcid: 14955
Holtta-Vuori M, Tanhuanpaa K, Mobius W, Somerharju P, Ikonen E. Modulation of cellular cholesterol transport and homeostasis by Rab11. Mol Biol Cell. 2002;13(9):3107–22. https://doi.org/10.1091/mbc.e02-01-0025 .
doi: 10.1091/mbc.e02-01-0025
pubmed: 12221119
pmcid: 124146
Narita K, Choudhury A, Dobrenis K, Sharma DK, Holicky EL, Marks DL, et al. Protein transduction of Rab9 in Niemann-Pick C cells reduces cholesterol storage. FASEB J. 2005;19(11):1558–60. https://doi.org/10.1096/fj.04-2714fje .
doi: 10.1096/fj.04-2714fje
pubmed: 15972801
Grewal T, Hoque M, Conway JRW, Reverter M, Wahba M, Beevi SS, et al. Annexin A6-A multifunctional scaffold in cell motility. Cell Adhes Migr. 2017;11(3):288–304. https://doi.org/10.1080/19336918.2016.1268318 .
doi: 10.1080/19336918.2016.1268318
Andersen CB, Moestrup SK. How calcium makes endocytic receptors attractive. Trends Biochem Sci. 2014;39(2):82–90. https://doi.org/10.1016/j.tibs.2013.12.003 .
doi: 10.1016/j.tibs.2013.12.003
pubmed: 24393667
Zhao Z, Michaely P. The role of calcium in lipoprotein release by the low-density lipoprotein receptor. Biochemistry. 2009;48(30):7313–24. https://doi.org/10.1021/bi900214u .
doi: 10.1021/bi900214u
pubmed: 19583244
Posey AD Jr, Pytel P, Gardikiotes K, Demonbreun AR, Rainey M, George M, et al. Endocytic recycling proteins EHD1 and EHD2 interact with fer-1-like-5 (Fer1L5) and mediate myoblast fusion. J Biol Chem. 2011;286(9):7379–88. https://doi.org/10.1074/jbc.M110.157222 .
doi: 10.1074/jbc.M110.157222
pubmed: 21177873
Johnson JL, He J, Ramadass M, Pestonjamasp K, Kiosses WB, Zhang J, et al. Munc13-4 is a Rab11-binding protein that regulates Rab11-positive vesicle trafficking and docking at the plasma membrane. J Biol Chem. 2016;291(7):3423–38. https://doi.org/10.1074/jbc.M115.705871 .
doi: 10.1074/jbc.M115.705871
pubmed: 26637356
Del Villar SG, Voelker TL, Westhoff M, Reddy GR, Spooner HC, Navedo MF, et al. beta-Adrenergic control of sarcolemmal CaV1.2 abundance by small GTPase Rab proteins. Proc Natl Acad Sci U S A. 2021;118(7):e2017937118. https://doi.org/10.1073/pnas.2017937118 .
doi: 10.1073/pnas.2017937118
pubmed: 33558236
pmcid: 7896340
de Souza LB, Ong HL, Liu X, Ambudkar IS. Fast endocytic recycling determines TRPC1-STIM1 clustering in ER-PM junctions and plasma membrane function of the channel. Biochim Biophys Acta. 2015;1853(10 Pt A):2709–21. https://doi.org/10.1016/j.bbamcr.2015.07.019 .
doi: 10.1016/j.bbamcr.2015.07.019
pubmed: 26232624
Yu F, Sun L, Machaca K. Constitutive recycling of the store-operated Ca
doi: 10.1083/jcb.201006022
pubmed: 21041445
pmcid: 3003315
Balla T, Kim YJ, Alvarez-Prats A, Pemberton J. Lipid dynamics at contact sites between the endoplasmic reticulum and other organelles. Annu Rev Cell Dev Biol. 2019;35:85–109. https://doi.org/10.1146/annurev-cellbio-100818-125251 .
doi: 10.1146/annurev-cellbio-100818-125251
pubmed: 31590585
Llado A, Tebar F, Calvo M, Moreto J, Sorkin A, Enrich C. Protein kinaseCdelta-calmodulin crosstalk regulates epidermal growth factor receptor exit from early endosomes. Mol Biol Cell. 2004;15(11):4877–91. https://doi.org/10.1091/mbc.e04-02-0127 .
doi: 10.1091/mbc.e04-02-0127
pubmed: 15342779
pmcid: 524735
Llado A, Timpson P, Vila de Muga S, Moreto J, Pol A, Grewal T, et al. Protein kinase Cdelta and calmodulin regulate epidermal growth factor receptor recycling from early endosomes through Arp2/3 complex and cortactin. Mol Biol Cell. 2008;19(1):17–29. https://doi.org/10.1091/mbc.e07-05-0411 .
doi: 10.1091/mbc.e07-05-0411
pubmed: 17959830
pmcid: 2174165
Harder T, Kellner R, Parton RG, Gruenberg J. Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol. Mol Biol Cell. 1997;8(3):533–45. https://doi.org/10.1091/mbc.8.3.533 .
doi: 10.1091/mbc.8.3.533
pubmed: 9188103
pmcid: 276102
Enrich C, Pol A, Calvo M, Pons M, Jackle S. Dissection of the multifunctional “Receptor-Recycling” endocytic compartment of hepatocytes. Hepatology. 1999;30(5):1115–20. https://doi.org/10.1002/hep.510300505 .
doi: 10.1002/hep.510300505
pubmed: 10534329
Feng X, Yang J. Lysosomal Calcium in Neurodegeneration. Messenger (Los Angel). 2016;5(1–2):56–66. https://doi.org/10.1166/msr.2016.1055 .
doi: 10.1166/msr.2016.1055
pubmed: 29082116
Venkatachalam K, Wong CO, Zhu MX. The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium. 2015;58(1):48–56. https://doi.org/10.1016/j.ceca.2014.10.008 .
doi: 10.1016/j.ceca.2014.10.008
pubmed: 25465891
Karacsonyi C, Miguel AS, Puertollano R. Mucolipin-2 localizes to the Arf6-associated pathway and regulates recycling of GPI-APs. Traffic. 2007;8(10):1404–14. https://doi.org/10.1111/j.1600-0854.2007.00619.x .
doi: 10.1111/j.1600-0854.2007.00619.x
pubmed: 17662026
Chen CC, Krogsaeter E, Butz ES, Li Y, Puertollano R, Wahl-Schott C, et al. TRPML2 is an osmo/mechanosensitive cation channel in endolysosomal organelles. Sci Adv. 2020;6(46):eabb5064. https://doi.org/10.1126/sciadv.abb5064 .
doi: 10.1126/sciadv.abb5064
pubmed: 33177082
pmcid: 7673730
Vangeel L, Voets T. Transient receptor potential channels and calcium signaling. Cold Spring Harb Perspect Biol. 2019;11(6):a035048. https://doi.org/10.1101/cshperspect.a035048 .
doi: 10.1101/cshperspect.a035048
pubmed: 30910771
pmcid: 6546042
Castonguay J, Orth JHC, Muller T, Sleman F, Grimm C, Wahl-Schott C, et al. The two-pore channel TPC1 is required for efficient protein processing through early and recycling endosomes. Sci Rep. 2017;7(1):10038. https://doi.org/10.1038/s41598-017-10607-4 .
doi: 10.1038/s41598-017-10607-4
pubmed: 28855648
pmcid: 5577145
Ruas M, Chuang KT, Davis LC, Al-Douri A, Tynan PW, Tunn R, et al. TPC1 has two variant isoforms, and their removal has different effects on endo-lysosomal functions compared to loss of TPC2. Mol Cell Biol. 2014;34(21):3981–92. https://doi.org/10.1128/MCB.00113-14 .
doi: 10.1128/MCB.00113-14
pubmed: 25135478
pmcid: 4386455
Guo J, Zeng W, Jiang Y. Tuning the ion selectivity of two-pore channels. Proc Natl Acad Sci U S A. 2017;114(5):1009–14. https://doi.org/10.1073/pnas.1616191114 .
doi: 10.1073/pnas.1616191114
pubmed: 28096396
pmcid: 5293054
Lagostena L, Festa M, Pusch M, Carpaneto A. The human two-pore channel 1 is modulated by cytosolic and luminal calcium. Sci Rep. 2017;7:43900. https://doi.org/10.1038/srep43900 .
doi: 10.1038/srep43900
pubmed: 28252105
pmcid: 5333365
Wang X, Zhang X, Dong XP, Samie M, Li X, Cheng X, et al. TPC proteins are phosphoinositide- activated sodium-selective ion channels in endosomes and lysosomes. Cell. 2012;151(2):372–83. https://doi.org/10.1016/j.cell.2012.08.036 .
doi: 10.1016/j.cell.2012.08.036
pubmed: 23063126
pmcid: 3475186
Kilpatrick BS, Eden ER, Hockey LN, Yates E, Futter CE, Patel S. An endosomal NAADP-sensitive two-pore Ca(2+) channel regulates ER-endosome membrane contact sites to control growth factor signaling. Cell Rep. 2017;18(7):1636–45. https://doi.org/10.1016/j.celrep.2017.01.052 .
doi: 10.1016/j.celrep.2017.01.052
pubmed: 28199837
pmcid: 5318655
Hasegawa J, Uchida Y, Mukai K, Lee S, Matsudaira T, Taguchi T. A role of phosphatidylserine in the function of recycling endosomes. Front Cell Dev Biol. 2021;9:783857. https://doi.org/10.3389/fcell.2021.783857 .
doi: 10.3389/fcell.2021.783857
pubmed: 35004683
pmcid: 8740049
Belcher JD, Hamilton RL, Brady SE, Hornick CA, Jaeckle S, Schneider WJ, et al. Isolation and characterization of three endosomal fractions from the liver of estradiol-treated rats. Proc Natl Acad Sci U S A. 1987;84(19):6785–9. https://doi.org/10.1073/pnas.84.19.6785 .
doi: 10.1073/pnas.84.19.6785
pubmed: 3477810
pmcid: 299169
Pol A, Ortega D, Enrich C. Identification and distribution of proteins in isolated endosomal fractions of rat liver: involvement in endocytosis, recycling and transcytosis. Biochem J. 1997;323(Pt 2):435–43. https://doi.org/10.1042/bj3230435 .
doi: 10.1042/bj3230435
pubmed: 9163335
pmcid: 1218338
Jackle S, Beisiegel U, Rinninger F, Buck F, Grigoleit A, Block A, et al. Annexin VI, a marker protein of hepatocytic endosomes. J Biol Chem. 1994;269(2):1026–32.
doi: 10.1016/S0021-9258(17)42215-0
pubmed: 7904597
Ortega D, Pol A, Biermer M, Jackle S, Enrich C. Annexin VI defines an apical endocytic compartment in rat liver hepatocytes. J Cell Sci. 1998;111(Pt 2):261–9.
doi: 10.1242/jcs.111.2.261
pubmed: 9405315
Enrich C, Rentero C, Grewal T. Annexin A6 in the liver: from the endocytic compartment to cellular physiology. Biochim Biophys Acta, Mol Cell Res. 2017;1864(6):933–46. https://doi.org/10.1016/j.bbamcr.2016.10.017 .
doi: 10.1016/j.bbamcr.2016.10.017
Apodaca G, Katz LA, Mostov KE. Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. J Cell Biol. 1994;125(1):67–86. https://doi.org/10.1083/jcb.125.1.67 .
doi: 10.1083/jcb.125.1.67
pubmed: 8138576
Mostov KE, Verges M, Altschuler Y. Membrane traffic in polarized epithelial cells. Curr Opin Cell Biol. 2000;12(4):483–90. https://doi.org/10.1016/s0955-0674(00)00120-4 .
doi: 10.1016/s0955-0674(00)00120-4
pubmed: 10873817
Verges M, Havel RJ, Mostov KE. A tubular endosomal fraction from rat liver: biochemical evidence of receptor sorting by default. Proc Natl Acad Sci U S A. 1999;96(18):10146–51. https://doi.org/10.1073/pnas.96.18.10146 .
doi: 10.1073/pnas.96.18.10146
pubmed: 10468577
pmcid: 17857
Verges M, Luton F, Gruber C, Tiemann F, Reinders LG, Huang L, et al. The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nat Cell Biol. 2004;6(8):763–9. https://doi.org/10.1038/ncb1153 .
doi: 10.1038/ncb1153
pubmed: 15247922
Martin-Belmonte F, Mostov K. Phosphoinositides control epithelial development. Cell Cycle. 2007;6(16):1957–61. https://doi.org/10.4161/cc.6.16.4583 .
doi: 10.4161/cc.6.16.4583
pubmed: 17712229
Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V, et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell. 2007;128(2):383–97. https://doi.org/10.1016/j.cell.2006.11.051 .
doi: 10.1016/j.cell.2006.11.051
pubmed: 17254974
pmcid: 1865103
Roman-Fernandez A, Roignot J, Sandilands E, Nacke M, Mansour MA, McGarry L, et al. The phospholipid PI(3,4)P2 is an apical identity determinant. Nat Commun. 2018;9(1):5041. https://doi.org/10.1038/s41467-018-07464-8 .
doi: 10.1038/s41467-018-07464-8
pubmed: 30487552
pmcid: 6262019
Maxwell KN, Breslow JL. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc Natl Acad Sci U S A. 2004;101(18):7100–5. https://doi.org/10.1073/pnas.0402133101 .
doi: 10.1073/pnas.0402133101
pubmed: 15118091
pmcid: 406472
Zelcer N, Hong C, Boyadjian R, Tontonoz P. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science. 2009;325(5936):100–4. https://doi.org/10.1126/science.1168974 .
doi: 10.1126/science.1168974
pubmed: 19520913
pmcid: 2777523
Qin Y, Ting F, Kim MJ, Strelnikov J, Harmon J, Gao F, et al. Phosphatidylinositol-(4,5)-bisphosphate regulates plasma cholesterol through LDL (Low-density lipoprotein) receptor lysosomal degradation. Arterioscler Thromb Vasc Biol. 2020;40(5):1311–24. https://doi.org/10.1161/ATVBAHA.120.314033 .
doi: 10.1161/ATVBAHA.120.314033
pubmed: 32188273
pmcid: 7197750
Bartuzi P, Billadeau DD, Favier R, Rong S, Dekker D, Fedoseienko A, et al. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL. Nat Commun. 2016;7:10961. https://doi.org/10.1038/ncomms10961 .
doi: 10.1038/ncomms10961
pubmed: 26965651
pmcid: 4792963
Fedoseienko A, Wijers M, Wolters JC, Dekker D, Smit M, Huijkman N, et al. The COMMD family regulates plasma LDL levels and attenuates atherosclerosis through stabilizing the CCC complex in endosomal LDLR trafficking. Circ Res. 2018;122(12):1648–60. https://doi.org/10.1161/CIRCRESAHA.117.312004 .
doi: 10.1161/CIRCRESAHA.117.312004
pubmed: 29545368
Keating MF, Calkin AC. The CCC complex COMManDs control of LDL cholesterol levels. Circ Res. 2018;122(12):1629–31. https://doi.org/10.1161/CIRCRESAHA.118.313074 .
doi: 10.1161/CIRCRESAHA.118.313074
pubmed: 29880494
Ungewickell A, Hugge C, Kisseleva M, Chang SC, Zou J, Feng Y, et al. The identification and characterization of two phosphatidylinositol-4,5-bisphosphate 4-phosphatases. Proc Natl Acad Sci U S A. 2005;102(52):18854–9. https://doi.org/10.1073/pnas.0509740102 .
doi: 10.1073/pnas.0509740102
pubmed: 16365287
pmcid: 1323219
Lo Surdo P, Bottomley MJ, Calzetta A, Settembre EC, Cirillo A, Pandit S, et al. Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH. EMBO Rep. 2011;12(12):1300–5. https://doi.org/10.1038/embor.2011.205 .
doi: 10.1038/embor.2011.205
pubmed: 22081141
Yan H, Ma YL, Gui YZ, Wang SM, Wang XB, Gao F, et al. MG132, a proteasome inhibitor, enhances LDL uptake in HepG2 cells in vitro by regulating LDLR and PCSK9 expression. Acta Pharmacol Sin. 2014;35(8):994–1004. https://doi.org/10.1038/aps.2014.52 .
doi: 10.1038/aps.2014.52
pubmed: 25042549
pmcid: 4125719
Choi S, Thapa N, Tan X, Hedman AC, Anderson RA. PIP kinases define PI4,5P(2)signaling specificity by association with effectors. Biochim Biophys Acta. 2015;1851(6):711–23. https://doi.org/10.1016/j.bbalip.2015.01.009 .
doi: 10.1016/j.bbalip.2015.01.009
pubmed: 25617736
pmcid: 4380618
Vicinanza M, Di Campli A, Polishchuk E, Santoro M, Di Tullio G, Godi A, et al. OCRL controls trafficking through early endosomes via PtdIns4,5P(2)-dependent regulation of endosomal actin. EMBO J. 2011;30(24):4970–85. https://doi.org/10.1038/emboj.2011.354 .
doi: 10.1038/emboj.2011.354
pubmed: 21971085
pmcid: 3242071
Nakatogawa H. Mechanisms governing autophagosome biogenesis. Nat Rev Mol Cell Biol. 2020;21(8):439–58. https://doi.org/10.1038/s41580-020-0241-0 .
doi: 10.1038/s41580-020-0241-0
pubmed: 32372019
Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010;12(9):814–22. https://doi.org/10.1038/ncb0910-814 .
doi: 10.1038/ncb0910-814
pubmed: 20811353
pmcid: 3616322
Kohler V, Aufschnaiter A, Buttner S. Closing the gap: membrane contact sites in the regulation of autophagy. Cells. 2020;9(5):1184. https://doi.org/10.3390/cells9051184 .
doi: 10.3390/cells9051184
pubmed: 32397538
pmcid: 7290522
Hollenstein DM, Kraft C. Autophagosomes are formed at a distinct cellular structure. Curr Opin Cell Biol. 2020;65:50–7. https://doi.org/10.1016/j.ceb.2020.02.012 .
doi: 10.1016/j.ceb.2020.02.012
pubmed: 32203894
pmcid: 7588827
Lystad AH, Simonsen A. Phosphoinositide-binding proteins in autophagy. FEBS Lett. 2016;590(15):2454–68. https://doi.org/10.1002/1873-3468.12286 .
doi: 10.1002/1873-3468.12286
pubmed: 27391591
Knaevelsrud H, Soreng K, Raiborg C, Haberg K, Rasmuson F, Brech A, et al. Membrane remodeling by the PX-BAR protein SNX18 promotes autophagosome formation. J Cell Biol. 2013;202(2):331–49. https://doi.org/10.1083/jcb.201205129 .
doi: 10.1083/jcb.201205129
pubmed: 23878278
pmcid: 3718966
Wang H, Sun HQ, Zhu X, Zhang L, Albanesi J, Levine B, et al. GABARAPs regulate PI4P-dependent autophagosome:lysosome fusion. Proc Natl Acad Sci U S A. 2015;112(22):7015–20. https://doi.org/10.1073/pnas.1507263112 .
doi: 10.1073/pnas.1507263112
pubmed: 26038556
pmcid: 4460452
de Lartigue J, Polson H, Feldman M, Shokat K, Tooze SA, Urbe S, et al. PIKfyve regulation of endosome-linked pathways. Traffic. 2009;10(7):883–93. https://doi.org/10.1111/j.1600-0854.2009.00915.x .
doi: 10.1111/j.1600-0854.2009.00915.x
pubmed: 19582903
pmcid: 2723830
Hasegawa J, Iwamoto R, Otomo T, Nezu A, Hamasaki M, Yoshimori T. Autophagosome-lysosome fusion in neurons requires INPP5E, a protein associated with Joubert syndrome. EMBO J. 2016;35(17):1853–67. https://doi.org/10.15252/embj.201593148 .
doi: 10.15252/embj.201593148
pubmed: 27340123
pmcid: 5007553
Wang H, Lo WT, Haucke V. Phosphoinositide switches in endocytosis and in the endolysosomal system. Curr Opin Cell Biol. 2019;59:50–7. https://doi.org/10.1016/j.ceb.2019.03.011 .
doi: 10.1016/j.ceb.2019.03.011
pubmed: 31029845
Hong Z, Pedersen NM, Wang L, Torgersen ML, Stenmark H, Raiborg C. PtdIns3P controls mTORC1 signaling through lysosomal positioning. J Cell Biol. 2017;216(12):4217–33. https://doi.org/10.1083/jcb.201611073 .
doi: 10.1083/jcb.201611073
pubmed: 29030394
pmcid: 5716264
Sun M, Luong G, Plastikwala F, Sun Y. Control of Rab7a activity and localization through endosomal type Igamma PIP 5-kinase is required for endosome maturation and lysosome function. FASEB J. 2020;34(2):2730–48. https://doi.org/10.1096/fj.201901830R .
doi: 10.1096/fj.201901830R
pubmed: 31908013
Li S, Ghosh C, Xing Y, Sun Y. Phosphatidylinositol 4,5-bisphosphate in the control of membrane trafficking. Int J Biol Sci. 2020;16(15):2761–74. https://doi.org/10.7150/ijbs.49665 .
doi: 10.7150/ijbs.49665
pubmed: 33061794
pmcid: 7545710
Baba T, Toth DJ, Sengupta N, Kim YJ, Balla T. Phosphatidylinositol 4,5-bisphosphate controls Rab7 and PLEKHM1 membrane cycling during autophagosome-lysosome fusion. EMBO J. 2019;38(8):e100312. https://doi.org/10.15252/embj.2018100312 .
doi: 10.15252/embj.2018100312
pubmed: 31368593
pmcid: 6463214
Saheki Y, De Camilli P. Endoplasmic reticulum-plasma membrane contact sites. Annu Rev Biochem. 2017;86:659–84. https://doi.org/10.1146/annurev-biochem-061516-044932 .
doi: 10.1146/annurev-biochem-061516-044932
pubmed: 28301744
Sarkar S, Carroll B, Buganim Y, Maetzel D, Ng AH, Cassady JP, et al. Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease. Cell Rep. 2013;5(5):1302–15. https://doi.org/10.1016/j.celrep.2013.10.042 .
doi: 10.1016/j.celrep.2013.10.042
pubmed: 24290752
pmcid: 3957429
Seranova E, Connolly KJ, Zatyka M, Rosenstock TR, Barrett T, Tuxworth RI, et al. Dysregulation of autophagy as a common mechanism in lysosomal storage diseases. Essays Biochem. 2017;61(6):733–49. https://doi.org/10.1042/EBC20170055 .
doi: 10.1042/EBC20170055
pubmed: 29233882
pmcid: 5869865
McEwan DG, Ryan KM. ATG2 and VPS13 proteins: molecular highways transporting lipids to drive membrane expansion and organelle communication. FEBS J. 2021;289(22):7113–27. https://doi.org/10.1111/febs.16280 .
doi: 10.1111/febs.16280
pubmed: 34783437
Li S, Zhang M, Ge L. A new type of membrane contact in the ER-Golgi system regulates autophagosome biogenesis. Autophagy. 2021;17:1–3. https://doi.org/10.1080/15548627.2021.1972406 .
doi: 10.1080/15548627.2021.1972406
pubmed: 33634751
pmcid: 7996087
Ge L, Zhang M, Kenny SJ, Liu D, Maeda M, Saito K, et al. Remodeling of ER-exit sites initiates a membrane supply pathway for autophagosome biogenesis. EMBO Rep. 2017;18(9):1586–603. https://doi.org/10.15252/embr.201744559 .
doi: 10.15252/embr.201744559
pubmed: 28754694
pmcid: 5579361
Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol. 2015;17(3):288–99. https://doi.org/10.1038/ncb3114 .
doi: 10.1038/ncb3114
pubmed: 25720963
pmcid: 4801004
Li X, Xia Q, Mao M, Zhou H, Zheng L, Wang Y, et al. Annexin-A1 SUMOylation regulates microglial polarization after cerebral ischemia by modulating IKKalpha stability via selective autophagy. Sci Adv. 2021;7(4):eabc5539. https://doi.org/10.1126/sciadv.abc5539 .
doi: 10.1126/sciadv.abc5539
pubmed: 33523920
pmcid: 7817101
Wang K, Zhang T, Lei Y, Li X, Jiang J, Lan J, et al. Identification of ANXA2 (annexin A2) as a specific bleomycin target to induce pulmonary fibrosis by impeding TFEB-mediated autophagic flux. Autophagy. 2018;14(2):269–82. https://doi.org/10.1080/15548627.2017.1409405 .
doi: 10.1080/15548627.2017.1409405
pubmed: 29172997
pmcid: 5902212
Ghislat G, Aguado C, Knecht E. Annexin A5 stimulates autophagy and inhibits endocytosis. J Cell Sci. 2012;125(Pt 1):92–107. https://doi.org/10.1242/jcs.086728 .
doi: 10.1242/jcs.086728
pubmed: 22266906
Meng K, Lu S, Yan X, Sun Y, Gao J, Wang Y, et al. Quantitative mitochondrial proteomics reveals ANXA7 as a crucial factor in Mitophagy. J Proteome Res. 2020;19(3):1275–84. https://doi.org/10.1021/acs.jproteome.9b00800 .
doi: 10.1021/acs.jproteome.9b00800
pubmed: 31975592
Bonifacino JS, Glick BS. The mechanisms of vesicle budding and fusion. Cell. 2004;116(2):153–66. https://doi.org/10.1016/s0092-8674(03)01079-1 .
doi: 10.1016/s0092-8674(03)01079-1
pubmed: 14744428
Jamieson JD, Palade GE. Role of the Golgi complex in the intracellular transport of secretory proteins. Proc Natl Acad Sci U S A. 1966;55(2):424–31. https://doi.org/10.1073/pnas.55.2.424 .
doi: 10.1073/pnas.55.2.424
pubmed: 5220960
pmcid: 224161
Hsu SC, TerBush D, Abraham M, Guo W. The exocyst complex in polarized exocytosis. Int Rev Cytol. 2004;233:243–65. https://doi.org/10.1016/S0074-7696(04)33006-8 .
doi: 10.1016/S0074-7696(04)33006-8
pubmed: 15037366
Mostov KE, Altschuler Y, Chapin SJ, Enrich C, Low SH, Luton F, et al. Regulation of protein traffic in polarized epithelial cells: the polymeric immunoglobulin receptor model. Cold Spring Harb Symp Quant Biol. 1995;60:775–81. https://doi.org/10.1101/sqb.1995.060.01.083 .
doi: 10.1101/sqb.1995.060.01.083
pubmed: 8824452
Shin OH, Lu J, Rhee JS, Tomchick DR, Pang ZP, Wojcik SM, et al. Munc13 C2B domain is an activity-dependent Ca
doi: 10.1038/nsmb.1758
pubmed: 20154707
pmcid: 2916016
Grishanin RN, Kowalchyk JA, Klenchin VA, Ann K, Earles CA, Chapman ER, et al. CAPS acts at a prefusion step in dense-core vesicle exocytosis as a PIP2 binding protein. Neuron. 2004;43(4):551–62. https://doi.org/10.1016/j.neuron.2004.07.028 .
doi: 10.1016/j.neuron.2004.07.028
pubmed: 15312653
Kabachinski G, Yamaga M, Kielar-Grevstad DM, Bruinsma S, Martin TF. CAPS and Munc13 utilize distinct PIP2-linked mechanisms to promote vesicle exocytosis. Mol Biol Cell. 2014;25(4):508–21. https://doi.org/10.1091/mbc.E12-11-0829 .
doi: 10.1091/mbc.E12-11-0829
pubmed: 24356451
pmcid: 3923642
James DJ, Kowalchyk J, Daily N, Petrie M, Martin TF. CAPS drives trans-SNARE complex formation and membrane fusion through syntaxin interactions. Proc Natl Acad Sci U S A. 2009;106(41):17308–13. https://doi.org/10.1073/pnas.0900755106 .
doi: 10.1073/pnas.0900755106
pubmed: 19805029
pmcid: 2765074
van den Bogaart G, Meyenberg K, Risselada HJ, Amin H, Willig KI, Hubrich BE, et al. Membrane protein sequestering by ionic protein-lipid interactions. Nature. 2011;479(7374):552–5. https://doi.org/10.1038/nature10545 .
doi: 10.1038/nature10545
pubmed: 22020284
pmcid: 3409895
Martens S, Kozlov MM, McMahon HT. How synaptotagmin promotes membrane fusion. Science. 2007;316(5828):1205–8. https://doi.org/10.1126/science.1142614 .
doi: 10.1126/science.1142614
pubmed: 17478680
Martin TF. Role of PI(4,5)P(2) in vesicle exocytosis and membrane fusion. Subcell Biochem. 2012;59:111–30. https://doi.org/10.1007/978-94-007-3015-1_4 .
doi: 10.1007/978-94-007-3015-1_4
pubmed: 22374089
pmcid: 3978774
Wu B, Guo W. The exocyst at a glance. J Cell Sci. 2015;128(16):2957–64. https://doi.org/10.1242/jcs.156398 .
doi: 10.1242/jcs.156398
pubmed: 26240175
pmcid: 4541039
Rabouille C, Malhotra V, Nickel W. Diversity in unconventional protein secretion. J Cell Sci. 2012;125(Pt 22):5251–5. https://doi.org/10.1242/jcs.103630 .
doi: 10.1242/jcs.103630
pubmed: 23377655
Rabouille C. Pathways of unconventional protein secretion. Trends Cell Biol. 2017;27(3):230–40. https://doi.org/10.1016/j.tcb.2016.11.007 .
doi: 10.1016/j.tcb.2016.11.007
pubmed: 27989656
Stewart SE, Ashkenazi A, Williamson A, Rubinsztein DC, Moreau K. Transbilayer phospholipid movement facilitates the translocation of annexin across membranes. J Cell Sci. 2018;131(14):jcs217034. https://doi.org/10.1242/jcs.217034 .
doi: 10.1242/jcs.217034
pubmed: 29930080
pmcid: 6080606
Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487–514. https://doi.org/10.1146/annurev-biochem-013118-111902 .
doi: 10.1146/annurev-biochem-013118-111902
pubmed: 31220978
Lu A, Wawro P, Morgens DW, Portela F, Bassik MC, Pfeffer SR. Genome-wide interrogation of extracellular vesicle biology using barcoded miRNAs. elife. 2018;7:e41460. https://doi.org/10.7554/eLife.41460 .
doi: 10.7554/eLife.41460
pubmed: 30556811
pmcid: 6312402
Villarroya-Beltri C, Baixauli F, Mittelbrunn M, Fernandez-Delgado I, Torralba D, Moreno-Gonzalo O, et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun. 2016;7:13588. https://doi.org/10.1038/ncomms13588 .
doi: 10.1038/ncomms13588
pubmed: 27882925
pmcid: 5123068
Zhang H, Deng T, Liu R, Bai M, Zhou L, Wang X, et al. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat Commun. 2017;8:15016. https://doi.org/10.1038/ncomms15016 .
doi: 10.1038/ncomms15016
pubmed: 28393839
pmcid: 5394240
Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun. 2014;5:3477. https://doi.org/10.1038/ncomms4477 .
doi: 10.1038/ncomms4477
pubmed: 24637612
Marquer C, Tian H, Yi J, Bastien J, Dall’Armi C, Yang-Klingler Y, et al. Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism. Nat Commun. 2016;7:11919. https://doi.org/10.1038/ncomms11919 .
doi: 10.1038/ncomms11919
pubmed: 27336679
pmcid: 4931008