Overview of Spiking Neural Network Learning Approaches and Their Computational Complexities.


Journal

Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366

Informations de publication

Date de publication:
11 Mar 2023
Historique:
received: 07 02 2023
revised: 08 03 2023
accepted: 09 03 2023
medline: 31 3 2023
entrez: 30 3 2023
pubmed: 31 3 2023
Statut: epublish

Résumé

Spiking neural networks (SNNs) are subjects of a topic that is gaining more and more interest nowadays. They more closely resemble actual neural networks in the brain than their second-generation counterparts, artificial neural networks (ANNs). SNNs have the potential to be more energy efficient than ANNs on event-driven neuromorphic hardware. This can yield drastic maintenance cost reduction for neural network models, as the energy consumption would be much lower in comparison to regular deep learning models hosted in the cloud today. However, such hardware is still not yet widely available. On standard computer architectures consisting mainly of central processing units (CPUs) and graphics processing units (GPUs) ANNs, due to simpler models of neurons and simpler models of connections between neurons, have the upper hand in terms of execution speed. In general, they also win in terms of learning algorithms, as SNNs do not reach the same levels of performance as their second-generation counterparts in typical machine learning benchmark tasks, such as classification. In this paper, we review existing learning algorithms for spiking neural networks, divide them into categories by type, and assess their computational complexity.

Identifiants

pubmed: 36991750
pii: s23063037
doi: 10.3390/s23063037
pmc: PMC10053242
pii:
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Poznań University of Technology
ID : 0311/SBAD/0731

Références

Sensors (Basel). 2021 Apr 10;21(8):
pubmed: 33920246
Front Neurosci. 2017 Dec 07;11:682
pubmed: 29375284
Sensors (Basel). 2021 May 10;21(9):
pubmed: 34068538
Neural Comput. 2018 Jun;30(6):1514-1541
pubmed: 29652587
Front Neurosci. 2018 Oct 15;12:665
pubmed: 30374283
Sci Robot. 2022 Jun 29;7(67):eabl8419
pubmed: 35767646
Nat Neurosci. 2000 Sep;3(9):919-26
pubmed: 10966623
Cereb Cortex. 2007 Oct;17(10):2443-52
pubmed: 17220510
Front Neurosci. 2019 Mar 07;13:95
pubmed: 30899212
Sci Robot. 2020 Mar 18;5(40):
pubmed: 33022598
Proc Biol Sci. 2016 Nov 30;283(1843):
pubmed: 27903878
Front Neurorobot. 2020 Oct 09;14:568359
pubmed: 33162886
Front Comput Neurosci. 2015 Aug 03;9:99
pubmed: 26941637
Front Neurosci. 2017 May 30;11:309
pubmed: 28611582
Front Comput Neurosci. 2022 Jun 16;16:859874
pubmed: 35782090
Neural Comput. 2018 Apr;30(4):987-1011
pubmed: 29381445
Front Neurosci. 2022 Sep 14;16:959626
pubmed: 36188479
Sci Robot. 2021 Sep 08;6(58):eabk3268
pubmed: 34516751
Psychol Rev. 2010 Jan;117(1):291-7
pubmed: 20063978
PLoS Comput Biol. 2015 Dec 03;11(12):e1004566
pubmed: 26633645
Front Neurosci. 2021 Nov 04;15:756876
pubmed: 34803591
Sci Rep. 2017 Aug 15;7(1):8257
pubmed: 28811481
PLoS Comput Biol. 2007 Feb 16;3(2):e31
pubmed: 17305422
Front Synaptic Neurosci. 2012 Jul 12;4:2
pubmed: 22807913
Front Neurorobot. 2022 May 18;16:904017
pubmed: 35663727
Front Neurosci. 2018 Oct 25;12:774
pubmed: 30410432
Brain Sci. 2022 Jun 30;12(7):
pubmed: 35884670
Front Neurosci. 2022 Mar 31;16:838832
pubmed: 35431777
Bioinspir Biomim. 2021 Oct 25;16(6):
pubmed: 34551395
IEEE Trans Neural Netw. 2003;14(6):1569-72
pubmed: 18244602
Front Neurosci. 2015 Nov 16;9:437
pubmed: 26635513

Auteurs

Paweł Pietrzak (P)

Institute of Computing Science, Faculty of Computing and Telecommunications, Poznan University of Technology, Piotrowo 3A Street, 61-138 Poznań, Poland.

Szymon Szczęsny (S)

Institute of Computing Science, Faculty of Computing and Telecommunications, Poznan University of Technology, Piotrowo 3A Street, 61-138 Poznań, Poland.

Damian Huderek (D)

Institute of Computing Science, Faculty of Computing and Telecommunications, Poznan University of Technology, Piotrowo 3A Street, 61-138 Poznań, Poland.

Łukasz Przyborowski (Ł)

Institute of Computing Science, Faculty of Computing and Telecommunications, Poznan University of Technology, Piotrowo 3A Street, 61-138 Poznań, Poland.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH