Histone modifications regulate pioneer transcription factor binding and cooperativity.
Journal
bioRxiv : the preprint server for biology
Titre abrégé: bioRxiv
Pays: United States
ID NLM: 101680187
Informations de publication
Date de publication:
15 Mar 2023
15 Mar 2023
Historique:
medline:
31
3
2023
entrez:
30
3
2023
pubmed:
31
3
2023
Statut:
epublish
Résumé
Pioneer transcription factors have the ability to access DNA in compacted chromatin. Multiple transcription factors can bind together to a regulatory element in a cooperative way and cooperation between pioneer transcription factors Oct4 and Sox2 is important for pluripotency and reprogramming. However, the molecular mechanisms by which pioneer transcription factors function and cooperate remain unclear. Here we present cryo-EM structures of human Oct4 bound to a nucleosome containing human Lin28B and nMatn1 DNA sequences, which bear multiple binding sites for Oct4. Our structural and biochemistry data reveal that Oct4 binding induces changes to the nucleosome structure, repositions the nucleosomal DNA and facilitates cooperative binding of additional Oct4 and of Sox2 to their internal binding sites. The flexible activation domain of Oct4 contacts the histone H4 N-terminal tail, altering its conformation and thus promoting chromatin decompaction. Moreover, the DNA binding domain of Oct4 engages with histone H3 N-terminal tail, and posttranslational modifications at H3K27 modulate DNA positioning and affect transcription factor cooperativity. Thus, our data show that the epigenetic landscape can regulate Oct4 activity to ensure proper cell reprogramming.
Identifiants
pubmed: 36993452
doi: 10.1101/2023.03.14.532583
pmc: PMC10055048
pii:
doi:
Types de publication
Preprint
Langues
eng
Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM135599
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM141694
Pays : United States
Commentaires et corrections
Type : UpdateIn
Références
Mol Cell Biol. 1997 Nov;17(11):6321-9
pubmed: 9343393
Cell. 2009 Feb 6;136(3):411-9
pubmed: 19203577
Cell. 2006 Apr 21;125(2):301-13
pubmed: 16630818
Nature. 2020 Sep;585(7826):609-613
pubmed: 32939087
Mol Cell. 2017 Dec 21;68(6):1067-1082.e12
pubmed: 29272704
Elife. 2017 Mar 13;6:
pubmed: 28287392
Cell. 2012 Nov 21;151(5):994-1004
pubmed: 23159369
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501
pubmed: 20383002
Nat Struct Mol Biol. 2018 Jan;25(1):101-108
pubmed: 29323273
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21
pubmed: 20124702
Science. 2020 Jun 26;368(6498):1460-1465
pubmed: 32327602
Genome Res. 2012 Sep;22(9):1798-812
pubmed: 22955990
Sci Rep. 2015 Aug 28;5:13533
pubmed: 26314899
Nat Commun. 2019 Aug 22;10(1):3795
pubmed: 31439846
Genome Res. 2012 Dec;22(12):2497-506
pubmed: 22960375
Cold Spring Harb Protoc. 2009 Dec;2009(12):pdb.prot5330
pubmed: 20150077
Elife. 2015 May 29;4:e06980
pubmed: 26023829
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
Genes Dev. 2003 Aug 15;17(16):2048-59
pubmed: 12923055
Cell. 2006 Aug 25;126(4):663-76
pubmed: 16904174
J Struct Biol. 2015 Nov;192(2):216-21
pubmed: 26278980
Cell. 2008 Mar 21;132(6):1049-61
pubmed: 18358816
Nature. 2020 Apr;580(7805):669-672
pubmed: 32350470
Cell. 2005 Sep 23;122(6):947-56
pubmed: 16153702
Nat Cell Biol. 2021 Aug;23(8):834-845
pubmed: 34354236
Nat Genet. 2018 Feb;50(2):250-258
pubmed: 29358654
Nat Cell Biol. 2013 Mar;15(3):295-301
pubmed: 23376973
Sci Rep. 2020 Jul 16;10(1):11832
pubmed: 32678275
Mol Cell. 2002 Feb;9(2):279-89
pubmed: 11864602
Biophys J. 2001 Aug;81(2):1127-32
pubmed: 11463653
Mol Cell. 2021 Jan 21;81(2):255-267.e6
pubmed: 33290745
Cell Rep. 2016 Feb 16;14(6):1540-1554
pubmed: 26832419
Nature. 2009 Dec 3;462(7273):595-601
pubmed: 19898493
Proc Natl Acad Sci U S A. 2014 Sep 16;111(37):13367-72
pubmed: 25187560
Nature. 2018 Oct;562(7725):76-81
pubmed: 30250250
Cell. 1998 Oct 30;95(3):379-91
pubmed: 9814708
Methods Mol Biol. 1999;119:1-16
pubmed: 10804500
Mol Cell. 2019 Aug 8;75(3):562-575.e5
pubmed: 31253573
Cell. 2007 Mar 9;128(5):1003-12
pubmed: 17350582
Cell Stem Cell. 2010 Apr 2;6(4):382-95
pubmed: 20362542
Annu Rev Genet. 2020 Nov 23;54:367-385
pubmed: 32886547
Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1183-8
pubmed: 9037027
Elife. 2018 Nov 09;7:
pubmed: 30412051
Bioessays. 2016 Nov;38(11):1150-1157
pubmed: 27633730
J Mol Biol. 1998 Feb 13;276(1):19-42
pubmed: 9514715
Nat Methods. 2020 Sep;17(9):923-927
pubmed: 32807957
Genes Dev. 2021 Jan 1;35(1-2):147-156
pubmed: 33303640
Development. 2016 Jun 1;143(11):1833-7
pubmed: 27246709
Genes Dev. 2003 Jan 1;17(1):126-40
pubmed: 12514105
Development. 2015 Jul 15;142(14):2397-404
pubmed: 26199409
Commun Biol. 2019 Jun 19;2:218
pubmed: 31240256
J Biol Chem. 2009 Jun 19;284(25):16716-16722
pubmed: 19395382
Nat Methods. 2017 Apr;14(4):331-332
pubmed: 28250466
Nature. 1997 Sep 18;389(6648):251-60
pubmed: 9305837
Nat Commun. 2018 Apr 6;9(1):1330
pubmed: 29626188
Nat Genet. 2020 Apr;52(4):418-427
pubmed: 32203463
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
Stem Cells. 2011 May;29(5):755-63
pubmed: 21305674
Nat Genet. 2021 Mar;53(3):279-287
pubmed: 33558757
Cell. 2018 Feb 8;172(4):650-665
pubmed: 29425488
Cell. 2015 Apr 23;161(3):555-568
pubmed: 25892221
Science. 2007 Dec 21;318(5858):1917-20
pubmed: 18029452
Cell Stem Cell. 2014 May 1;14(5):575-91
pubmed: 24792115
Sci Rep. 2018 May 4;8(1):7046
pubmed: 29728587