Copper-catalysed enantioconvergent alkylation of oxygen nucleophiles.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Jun 2023
Jun 2023
Historique:
received:
05
09
2022
accepted:
22
03
2023
medline:
9
6
2023
pubmed:
31
3
2023
entrez:
30
3
2023
Statut:
ppublish
Résumé
Carbon-oxygen bonds are commonplace in organic molecules, including chiral bioactive compounds; therefore, the development of methods for their construction with simultaneous control of stereoselectivity is an important objective in synthesis. The Williamson ether synthesis, first reported in 1850
Identifiants
pubmed: 36996870
doi: 10.1038/s41586-023-06001-y
pii: 10.1038/s41586-023-06001-y
doi:
Substances chimiques
Carbon
7440-44-0
Copper
789U1901C5
Oxygen
S88TT14065
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
301-307Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Williamson, A. Theory of etherification. Philos. Mag. 37, 350–356 (1850).
Kazmaier, U. (ed.) Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis (Springer, 2012).
Nakajima, K., Shibata, M. & Nishibayashi, Y. Copper-catalyzed enantioselective propargylic etherification of propargylic esters with alcohols. J. Am. Chem. Soc. 137, 2472–2475 (2015).
doi: 10.1021/jacs.5b00004
pubmed: 25658141
Li, R.-Z. et al. Site-divergent delivery of terminal propargyls to carbohydrates by synergistic catalysis. Chem 3, 834–845 (2017).
doi: 10.1016/j.chempr.2017.09.007
Li, R.-Z. et al. Enantioselective propargylation of polyols and desymmetrization of meso 1,2-diols by copper/borinic acid dual catalysis. Angew. Chem. Int. Ed. 56, 7213–7217 (2017).
doi: 10.1002/anie.201703029
Li, R.-Z., Liu, D.-Q. & Niu, D. Asymmetric O-propargylation of secondary aliphatic alcohols. Nat. Catal. 3, 672–680 (2020).
doi: 10.1038/s41929-020-0462-9
Xu, X., Peng, L., Chang, X. & Guo, C. Ni/chiral sodium carboxylate dual catalyzed asymmetric O-propargylation. J. Am. Chem. Soc. 143, 21048–21055 (2021).
doi: 10.1021/jacs.1c11044
pubmed: 34860020
Kennemur, J. L., Maji, R., Scharf, M. J. & List, B. Catalytic asymmetric hydroalkoxylation of C−C multiple bonds. Chem. Rev. 121, 14649–14681 (2021).
doi: 10.1021/acs.chemrev.1c00620
pubmed: 34860509
pmcid: 8704240
Takemoto, Y. & Miyabe, H. in Catalytic Asymmetric Synthesis 3rd edn (ed. Ojima, I.) 227–267 (Wiley, 2010).
Schneider, N., Lowe, D. M., Sayle, R. A., Tarselli, M. A. & Landrum, G. A. Big data from pharmaceutical patents: a computational analysis of medicinal chemists’ bread and butter. J. Med. Chem. 59, 4385–4402 (2016).
doi: 10.1021/acs.jmedchem.6b00153
pubmed: 27028220
Fu, G. C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to S
doi: 10.1021/acscentsci.7b00212
pubmed: 28776010
pmcid: 5532721
Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).
doi: 10.1126/science.aaf7230
pubmed: 28408546
pmcid: 5611817
Zhang, X. & Tan, C.-H. Stereospecific and stereoconvergent nucleophilic substitution reactions at tertiary carbon centers. Chem 7, 1451–1486 (2021).
doi: 10.1016/j.chempr.2020.11.022
Grange, R. L., Clizbe, E. A. & Evans, P. A. Recent developments in asymmetric allylic amination reactions. Synthesis 48, 2911–2968 (2016).
doi: 10.1055/s-0035-1562090
Lauder, K., Toscani, A., Scalacci, N. & Castagnolo, D. Synthesis and reactivity of propargylamines in organic chemistry. Chem. Rev. 117, 14091–14200 (2017).
doi: 10.1021/acs.chemrev.7b00343
pubmed: 29166000
Zhang, D.-Y. & Hu, X.-P. Recent advances in copper-catalyzed propargylic substitution. Tetrahedron Lett. 56, 283–295 (2015).
doi: 10.1016/j.tetlet.2014.11.112
Zhang, H. et al. Construction of the N1−C3 linkage stereogenic centers by catalytic asymmetric amination reaction of 3-bromooxindoles with indolines. Org. Lett. 16, 2394–2397 (2014).
doi: 10.1021/ol5007423
pubmed: 24725065
Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).
doi: 10.1126/science.aad8313
pubmed: 26912852
pmcid: 4770572
Zhang, X. et al. An enantioconvergent halogenophilic nucleophilic substitution (S
doi: 10.1126/science.aau7797
pubmed: 30679372
Bartoszewicz, A., Matier, C. D. & Fu, G. C. Enantioconvergent alkylations of amines by alkyl electrophiles: copper-catalyzed nucleophilic substitutions of racemic α-halolactams by indoles. J. Am. Chem. Soc. 141, 14864–14869 (2019).
doi: 10.1021/jacs.9b07875
pubmed: 31496239
pmcid: 7055584
Wang, Y., Wang, S., Shan, W. & Shao, Z. Direct asymmetric N-propargylation of indoles and carbazoles catalyzed by lithium SPINOL phosphate. Nat. Commun. 11, 226 (2020).
doi: 10.1038/s41467-019-13886-9
pubmed: 31932668
pmcid: 6957506
Chen, C., Peters, J. C. & Fu, G. C. Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity. Nature 596, 250–256 (2021).
doi: 10.1038/s41586-021-03730-w
pubmed: 34182570
pmcid: 8363576
Zhang, Y.-F. et al. Enantioconvergent Cu-catalyzed radical C−N coupling of racemic secondary alkyl halides to access α-chiral primary amines. J. Am. Chem. Soc. 143, 15413–15419 (2021).
doi: 10.1021/jacs.1c07726
pubmed: 34505516
Cho, H. et al. Photoinduced, copper-catalyzed enantioconvergent alkylations of anilines by racemic tertiary electrophiles: synthesis and mechanism. J. Am. Chem. Soc. 144, 4550–4558 (2022).
doi: 10.1021/jacs.1c12749
pubmed: 35253433
pmcid: 9239302
Ding, C.-H. & Hou, X.-L. Catalytic asymmetric propargylation. Chem. Rev. 111, 1914–1937 (2011).
doi: 10.1021/cr100284m
pubmed: 21344874
Zhou, Z., Behnke, N. E. & Kürti, L. Copper-catalyzed synthesis of hindered ethers from α-bromo carbonyl compounds. Org. Lett. 20, 5452–5456 (2018).
doi: 10.1021/acs.orglett.8b02371
pubmed: 30113173
pmcid: 7802898
Fantinati, A., Zanirato, V., Marchetti, P. & Trapella, C. The fascinating chemistry of α-haloamides. ChemistryOpen 9, 100–170 (2020).
doi: 10.1002/open.201900220
pubmed: 32025460
pmcid: 6996577
Umejiego, N. N. et al. Targeting a prokaryotic protein in a eukaryotic pathogen: identification of lead compounds against cryptosporidiosis. Chem. Biol. 15, 70–77 (2008).
doi: 10.1016/j.chembiol.2007.12.010
pubmed: 18215774
pmcid: 2441818
Tanaka, T., Oyamada, M., Igarashi, K. & Takasawa, Y. Plant growth-regulating activity, and photolytic and microbial decomposition of optical isomers of naproanilide. Weed Res. 36, 50–57 (1991).
Whitehurst, B. C. et al. Identification of 2-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)amino)-N-phenylpropanamides as a novel class of potent DprE1 inhibitors. Bioorg. Med. Chem. Lett. 30, 127192 (2020).
doi: 10.1016/j.bmcl.2020.127192
pubmed: 32312582
Kalita, D. et al. Interactions of amino acids, carboxylic acids, and mineral acids with different quinoline derivatives. J. Mol. Struct. 990, 183–196 (2011).
doi: 10.1016/j.molstruc.2011.01.040
Maurya, S. K. et al. Triazole inhibitors of Cryptosporidium parvum inosine 50-monophosphate dehydrogenase. J. Med. Chem. 52, 4623–4630 (2009).
doi: 10.1021/jm900410u
pubmed: 19624136
pmcid: 2810100
Yu, J., Wang, Y., Zhang, P. & Wu, J. Direct amination of phenols under metal-free conditions. Synlett 24, 1448–1454 (2013).
doi: 10.1055/s-0033-1338703
Lengyel, I. & Sheehan, J. C. α-Lactams (aziridinones). Angew. Chem. Int. Ed. 7, 25–36 (1968).
doi: 10.1002/anie.196800251
Hoffman, R. V. & Cesare, V. α-Lactams. Sci. Synth. 21, 591–608 (2005).
Baumgarten, H. E., Chiang, N.-C. R., Elia, V. J. & Beum, P. V. Reactions of l-tert-butyl-3-phenyaziridinone and α-bromo-tert-butylphenylacetamide with benzyl-Grignard reagents. J. Org. Chem. 50, 5507–5512 (1985).
doi: 10.1021/jo00350a014
Boyer, C. et al. Copper-mediated living radical polymerization (atom transfer radical polymerization and copper(0) mediated polymerization): from fundamentals to bioapplications. Chem. Rev. 116, 1803–1949 (2016).
doi: 10.1021/acs.chemrev.5b00396
pubmed: 26535452
Montanari, F. & Quici, S. in e-EROS Encyclopedia of Reagents for Organic Synthesis 1–12 (Wiley, 2016).
Casitas, A. & Ribas, X. The role of organometallic copper(III) complexes in homogeneous catalysis. Chem. Sci. 4, 2301–2318 (2013).
doi: 10.1039/c3sc21818j
Musa, O. M., Choi, S.-Y., Horner, J. H. & Newcomb, M. N. Absolute rate constants for α-amide radical reactions. J. Org. Chem. 63, 786–793 (1998).
doi: 10.1021/jo9717907
pubmed: 11672074
Anslyn, E. V. & Dougherty, D. A. Modern Physical Organic Chemistry 155–157 (University Science Books, 2006).