Copper-catalysed enantioconvergent alkylation of oxygen nucleophiles.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Jun 2023
Historique:
received: 05 09 2022
accepted: 22 03 2023
medline: 9 6 2023
pubmed: 31 3 2023
entrez: 30 3 2023
Statut: ppublish

Résumé

Carbon-oxygen bonds are commonplace in organic molecules, including chiral bioactive compounds; therefore, the development of methods for their construction with simultaneous control of stereoselectivity is an important objective in synthesis. The Williamson ether synthesis, first reported in 1850

Identifiants

pubmed: 36996870
doi: 10.1038/s41586-023-06001-y
pii: 10.1038/s41586-023-06001-y
doi:

Substances chimiques

Carbon 7440-44-0
Copper 789U1901C5
Oxygen S88TT14065

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

301-307

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Williamson, A. Theory of etherification. Philos. Mag. 37, 350–356 (1850).
Kazmaier, U. (ed.) Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis (Springer, 2012).
Nakajima, K., Shibata, M. & Nishibayashi, Y. Copper-catalyzed enantioselective propargylic etherification of propargylic esters with alcohols. J. Am. Chem. Soc. 137, 2472–2475 (2015).
doi: 10.1021/jacs.5b00004 pubmed: 25658141
Li, R.-Z. et al. Site-divergent delivery of terminal propargyls to carbohydrates by synergistic catalysis. Chem 3, 834–845 (2017).
doi: 10.1016/j.chempr.2017.09.007
Li, R.-Z. et al. Enantioselective propargylation of polyols and desymmetrization of meso 1,2-diols by copper/borinic acid dual catalysis. Angew. Chem. Int. Ed. 56, 7213–7217 (2017).
doi: 10.1002/anie.201703029
Li, R.-Z., Liu, D.-Q. & Niu, D. Asymmetric O-propargylation of secondary aliphatic alcohols. Nat. Catal. 3, 672–680 (2020).
doi: 10.1038/s41929-020-0462-9
Xu, X., Peng, L., Chang, X. & Guo, C. Ni/chiral sodium carboxylate dual catalyzed asymmetric O-propargylation. J. Am. Chem. Soc. 143, 21048–21055 (2021).
doi: 10.1021/jacs.1c11044 pubmed: 34860020
Kennemur, J. L., Maji, R., Scharf, M. J. & List, B. Catalytic asymmetric hydroalkoxylation of C−C multiple bonds. Chem. Rev. 121, 14649–14681 (2021).
doi: 10.1021/acs.chemrev.1c00620 pubmed: 34860509 pmcid: 8704240
Takemoto, Y. & Miyabe, H. in Catalytic Asymmetric Synthesis 3rd edn (ed. Ojima, I.) 227–267 (Wiley, 2010).
Schneider, N., Lowe, D. M., Sayle, R. A., Tarselli, M. A. & Landrum, G. A. Big data from pharmaceutical patents: a computational analysis of medicinal chemists’ bread and butter. J. Med. Chem. 59, 4385–4402 (2016).
doi: 10.1021/acs.jmedchem.6b00153 pubmed: 27028220
Fu, G. C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to S
doi: 10.1021/acscentsci.7b00212 pubmed: 28776010 pmcid: 5532721
Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).
doi: 10.1126/science.aaf7230 pubmed: 28408546 pmcid: 5611817
Zhang, X. & Tan, C.-H. Stereospecific and stereoconvergent nucleophilic substitution reactions at tertiary carbon centers. Chem 7, 1451–1486 (2021).
doi: 10.1016/j.chempr.2020.11.022
Grange, R. L., Clizbe, E. A. & Evans, P. A. Recent developments in asymmetric allylic amination reactions. Synthesis 48, 2911–2968 (2016).
doi: 10.1055/s-0035-1562090
Lauder, K., Toscani, A., Scalacci, N. & Castagnolo, D. Synthesis and reactivity of propargylamines in organic chemistry. Chem. Rev. 117, 14091–14200 (2017).
doi: 10.1021/acs.chemrev.7b00343 pubmed: 29166000
Zhang, D.-Y. & Hu, X.-P. Recent advances in copper-catalyzed propargylic substitution. Tetrahedron Lett. 56, 283–295 (2015).
doi: 10.1016/j.tetlet.2014.11.112
Zhang, H. et al. Construction of the N1−C3 linkage stereogenic centers by catalytic asymmetric amination reaction of 3-bromooxindoles with indolines. Org. Lett. 16, 2394–2397 (2014).
doi: 10.1021/ol5007423 pubmed: 24725065
Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).
doi: 10.1126/science.aad8313 pubmed: 26912852 pmcid: 4770572
Zhang, X. et al. An enantioconvergent halogenophilic nucleophilic substitution (S
doi: 10.1126/science.aau7797 pubmed: 30679372
Bartoszewicz, A., Matier, C. D. & Fu, G. C. Enantioconvergent alkylations of amines by alkyl electrophiles: copper-catalyzed nucleophilic substitutions of racemic α-halolactams by indoles. J. Am. Chem. Soc. 141, 14864–14869 (2019).
doi: 10.1021/jacs.9b07875 pubmed: 31496239 pmcid: 7055584
Wang, Y., Wang, S., Shan, W. & Shao, Z. Direct asymmetric N-propargylation of indoles and carbazoles catalyzed by lithium SPINOL phosphate. Nat. Commun. 11, 226 (2020).
doi: 10.1038/s41467-019-13886-9 pubmed: 31932668 pmcid: 6957506
Chen, C., Peters, J. C. & Fu, G. C. Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity. Nature 596, 250–256 (2021).
doi: 10.1038/s41586-021-03730-w pubmed: 34182570 pmcid: 8363576
Zhang, Y.-F. et al. Enantioconvergent Cu-catalyzed radical C−N coupling of racemic secondary alkyl halides to access α-chiral primary amines. J. Am. Chem. Soc. 143, 15413–15419 (2021).
doi: 10.1021/jacs.1c07726 pubmed: 34505516
Cho, H. et al. Photoinduced, copper-catalyzed enantioconvergent alkylations of anilines by racemic tertiary electrophiles: synthesis and mechanism. J. Am. Chem. Soc. 144, 4550–4558 (2022).
doi: 10.1021/jacs.1c12749 pubmed: 35253433 pmcid: 9239302
Ding, C.-H. & Hou, X.-L. Catalytic asymmetric propargylation. Chem. Rev. 111, 1914–1937 (2011).
doi: 10.1021/cr100284m pubmed: 21344874
Zhou, Z., Behnke, N. E. & Kürti, L. Copper-catalyzed synthesis of hindered ethers from α-bromo carbonyl compounds. Org. Lett. 20, 5452–5456 (2018).
doi: 10.1021/acs.orglett.8b02371 pubmed: 30113173 pmcid: 7802898
Fantinati, A., Zanirato, V., Marchetti, P. & Trapella, C. The fascinating chemistry of α-haloamides. ChemistryOpen 9, 100–170 (2020).
doi: 10.1002/open.201900220 pubmed: 32025460 pmcid: 6996577
Umejiego, N. N. et al. Targeting a prokaryotic protein in a eukaryotic pathogen: identification of lead compounds against cryptosporidiosis. Chem. Biol. 15, 70–77 (2008).
doi: 10.1016/j.chembiol.2007.12.010 pubmed: 18215774 pmcid: 2441818
Tanaka, T., Oyamada, M., Igarashi, K. & Takasawa, Y. Plant growth-regulating activity, and photolytic and microbial decomposition of optical isomers of naproanilide. Weed Res. 36, 50–57 (1991).
Whitehurst, B. C. et al. Identification of 2-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)amino)-N-phenylpropanamides as a novel class of potent DprE1 inhibitors. Bioorg. Med. Chem. Lett. 30, 127192 (2020).
doi: 10.1016/j.bmcl.2020.127192 pubmed: 32312582
Kalita, D. et al. Interactions of amino acids, carboxylic acids, and mineral acids with different quinoline derivatives. J. Mol. Struct. 990, 183–196 (2011).
doi: 10.1016/j.molstruc.2011.01.040
Maurya, S. K. et al. Triazole inhibitors of Cryptosporidium parvum inosine 50-monophosphate dehydrogenase. J. Med. Chem. 52, 4623–4630 (2009).
doi: 10.1021/jm900410u pubmed: 19624136 pmcid: 2810100
Yu, J., Wang, Y., Zhang, P. & Wu, J. Direct amination of phenols under metal-free conditions. Synlett 24, 1448–1454 (2013).
doi: 10.1055/s-0033-1338703
Lengyel, I. & Sheehan, J. C. α-Lactams (aziridinones). Angew. Chem. Int. Ed. 7, 25–36 (1968).
doi: 10.1002/anie.196800251
Hoffman, R. V. & Cesare, V. α-Lactams. Sci. Synth. 21, 591–608 (2005).
Baumgarten, H. E., Chiang, N.-C. R., Elia, V. J. & Beum, P. V. Reactions of l-tert-butyl-3-phenyaziridinone and α-bromo-tert-butylphenylacetamide with benzyl-Grignard reagents. J. Org. Chem. 50, 5507–5512 (1985).
doi: 10.1021/jo00350a014
Boyer, C. et al. Copper-mediated living radical polymerization (atom transfer radical polymerization and copper(0) mediated polymerization): from fundamentals to bioapplications. Chem. Rev. 116, 1803–1949 (2016).
doi: 10.1021/acs.chemrev.5b00396 pubmed: 26535452
Montanari, F. & Quici, S. in e-EROS Encyclopedia of Reagents for Organic Synthesis 1–12 (Wiley, 2016).
Casitas, A. & Ribas, X. The role of organometallic copper(III) complexes in homogeneous catalysis. Chem. Sci. 4, 2301–2318 (2013).
doi: 10.1039/c3sc21818j
Musa, O. M., Choi, S.-Y., Horner, J. H. & Newcomb, M. N. Absolute rate constants for α-amide radical reactions. J. Org. Chem. 63, 786–793 (1998).
doi: 10.1021/jo9717907 pubmed: 11672074
Anslyn, E. V. & Dougherty, D. A. Modern Physical Organic Chemistry 155–157 (University Science Books, 2006).

Auteurs

Caiyou Chen (C)

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, People's Republic of China.

Gregory C Fu (GC)

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA. gcfu@caltech.edu.

Articles similaires

India Carbon Sequestration Environmental Monitoring Carbon Biomass
Osteosarcoma Animals Glutathione Oxidation-Reduction Mice
Humans Pulmonary Disease, Chronic Obstructive Exercise Tolerance Male Aged
Charcoal Soil Microbiology Soil Biomass Carbon

Classifications MeSH