Forest disturbance and recovery in Peruvian Amazonia.
National Forest Inventory (NFI)
aboveground biomass (AGB)
disturbance intensity
species richness
time since disturbance
tropical forests
Journal
Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746
Informations de publication
Date de publication:
07 2023
07 2023
Historique:
revised:
20
01
2023
received:
16
05
2022
accepted:
24
02
2023
medline:
7
6
2023
pubmed:
31
3
2023
entrez:
30
3
2023
Statut:
ppublish
Résumé
Amazonian forests function as biomass and biodiversity reservoirs, contributing to climate change mitigation. While they continuously experience disturbance, the effect that disturbances have on biomass and biodiversity over time has not yet been assessed at a large scale. Here, we evaluate the degree of recent forest disturbance in Peruvian Amazonia and the effects that disturbance, environmental conditions and human use have on biomass and biodiversity in disturbed forests. We integrate tree-level data on aboveground biomass (AGB) and species richness from 1840 forest plots from Peru's National Forest Inventory with remotely sensed monitoring of forest change dynamics, based on disturbances detected from Landsat-derived Normalized Difference Moisture Index time series. Our results show a clear negative effect of disturbance intensity tree species richness. This effect was also observed on AGB and species richness recovery values towards undisturbed levels, as well as on the recovery of species composition towards undisturbed levels. Time since disturbance had a larger effect on AGB than on species richness. While time since disturbance has a positive effect on AGB, unexpectedly we found a small negative effect of time since disturbance on species richness. We estimate that roughly 15% of Peruvian Amazonian forests have experienced disturbance at least once since 1984, and that, following disturbance, have been increasing in AGB at a rate of 4.7 Mg ha Los bosques amazónicos son reservorios y sumideros de carbono, contribuyendo a la mitigación del cambio climático. Si bien experimentan perturbaciones, el efecto de estas en la biomasa y biodiversidad a través del tiempo no ha sido evaluado a gran escala. En este estudio, evaluamos el grado de perturbación forestal reciente en la Amazonía peruana y los efectos de las perturbaciones, condiciones ambientales y actividad antrópica sobre la biomasa y la biodiversidad en bosques perturbados. Los datos de biomasa aérea y riqueza de especies forestales provenientes de 1,840 subparcelas del Inventario Nacional Forestal y de Fauna Silvestre (INFFS) se analizaron en conjunto con la información de detección de cambios de cobertura forestal derivadas de perturbaciones detectadas a partir de series de tiempo de índices de diferencia de humedad normalizados (NDMI) a partir de imágenes Landsat. Nuestros resultados muestran un claro efecto negativo de la intensidad de las perturbaciones sobre la riqueza de especies arbóreas. Este efecto también fue observado en los valores de recuperación de biomasa aérea y riqueza de especies arbóreas hacia niveles no perturbados, así como en la recuperación de la composición florística. El tiempo transcurrido desde la perturbación tuvo un efecto mayor sobre la biomasa aérea que sobre la riqueza de especies. Mientras el tiempo desde una perturbación forestal tuvo un efecto positivo sobre la biomasa área, se observó un pequeño efecto negativo sobre la riqueza de especies. Estimamos que aproximadamente el 15% de los bosques en la Amazonía peruana han experimentado una perturbación al menos una vez desde 1984, y que, tras esta, han aumentado en biomasa aérea en una tasa de 4.7 Mg ha
Autres résumés
Type: Publisher
(spa)
Los bosques amazónicos son reservorios y sumideros de carbono, contribuyendo a la mitigación del cambio climático. Si bien experimentan perturbaciones, el efecto de estas en la biomasa y biodiversidad a través del tiempo no ha sido evaluado a gran escala. En este estudio, evaluamos el grado de perturbación forestal reciente en la Amazonía peruana y los efectos de las perturbaciones, condiciones ambientales y actividad antrópica sobre la biomasa y la biodiversidad en bosques perturbados. Los datos de biomasa aérea y riqueza de especies forestales provenientes de 1,840 subparcelas del Inventario Nacional Forestal y de Fauna Silvestre (INFFS) se analizaron en conjunto con la información de detección de cambios de cobertura forestal derivadas de perturbaciones detectadas a partir de series de tiempo de índices de diferencia de humedad normalizados (NDMI) a partir de imágenes Landsat. Nuestros resultados muestran un claro efecto negativo de la intensidad de las perturbaciones sobre la riqueza de especies arbóreas. Este efecto también fue observado en los valores de recuperación de biomasa aérea y riqueza de especies arbóreas hacia niveles no perturbados, así como en la recuperación de la composición florística. El tiempo transcurrido desde la perturbación tuvo un efecto mayor sobre la biomasa aérea que sobre la riqueza de especies. Mientras el tiempo desde una perturbación forestal tuvo un efecto positivo sobre la biomasa área, se observó un pequeño efecto negativo sobre la riqueza de especies. Estimamos que aproximadamente el 15% de los bosques en la Amazonía peruana han experimentado una perturbación al menos una vez desde 1984, y que, tras esta, han aumentado en biomasa aérea en una tasa de 4.7 Mg ha
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3601-3621Subventions
Organisme : Australian Department of Foreign Affairs and Trade (DFAT)
Organisme : Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit
Organisme : CGIAR Research Program on Forests, Trees and Agroforestry (CRP-FTA)
Organisme : Direktoratet for Utviklingssamarbeid
Organisme : United Kingdom Department for International Development (UKAID)
Organisme : Norwegian Agency for Development Cooperation
Organisme : European Commission
Organisme : International Climate Initiative
Informations de copyright
© 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Références
Álvarez-Dávila, E., Cayuela, L., González-Caro, S., Aldana, A. M., Stevenson, P. R., Phillips, O., Cogollo, Á., Peñuela, M. C., von Hildebrand, P., Jiménez, E., Melo, O., Londoño-Vega, A. C., Mendoza, I., Velásquez, O., Fernández, F., Serna, M., Velázquez-Rua, C., Benítez, D., & Rey-Benayas, J. M. (2017). Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLoS One, 12(3), e0171072. https://doi.org/10.1371/journal.pone.0171072
Anderson-Teixeira, K. J., Miller, A. D., Mohan, J. E., Hudiburg, T. W., Duval, B. D., & DeLucia, E. H. (2013). Altered dynamics of forest recovery under a changing climate. Global Change Biology, 19(7), 2001-2021. https://doi.org/10.1111/gcb.12194
Asner, G. P. (2013). Geography of forest disturbance. Proceedings of the National Academy of Science of the United States of America, 110, 3711-3712. https://doi.org/10.1073/pnas.1300396110
Barber, C. P., Cochrane, M. A., Souza, C. M., & Laurance, W. F. (2014). Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biological Conservation, 177, 203-209. https://doi.org/10.1016/j.biocon.2014.07.004
Barlow, J., Lennox, G. D., Ferreira, J., Berenguer, E., Lees, A. C., Nally, R. M., Thomson, J. R., Ferraz, S. F., Louzada, J., Oliveira, V. H., Parry, L., Solar, R. R., Vieira, I. C., Aragão, L. E., Begotti, R. A., Braga, R. F., Cardoso, T. M., de Oliveira, R. C., Jr., Souza, C. M., Jr., … Gardner, T. A. (2016). Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature, 535(7610), 144-147. https://doi.org/10.1038/nature18326
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01
Berenguer, E., Ferreira, J., Gardner, T. A., Aragão, L. E. O. C., De Camargo, P. B., Cerri, C. E., Durigan, M., Cosme De Oliveira Junior, R., Vieira, I. C., & Barlow, J. (2014). A large-scale field assessment of carbon stocks in human-modified tropical forests. Global Change Biology, 20(12), 3713-3726. https://doi.org/10.1111/gcb.12627
Berenguer, E., Malhi, Y., Brando, P., Cordeiro, A. C. N., Ferreira, J., França, F., Chesini Rossi, L., Maria Moraes de Seixas, M., & Barlow, J. (2018). Tree growth and stem carbon accumulation in human-modified Amazonian forests following drought and fire. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1760), 20170308. https://doi.org/10.1098/rstb.2017.0308
Bivand, R., & Rundel, C. (2017). rgeos: Interface to Geometry Engine - Open Source (‘GEOS’). R package version 0.3-26.
Brando, P. M., Paolucci, L., Ummenhofer, C. C., Ordway, E. M., Hartmann, H., Cattau, M. E., Rattis, L., Medjibe, V., Coe, M. T., & Balch, J. (2019). Droughts, wildfires, and forest carbon cycling: A pantropical. Synthesis, 47, 555-581. https://doi.org/10.1146/annurev-earth-082517-010235
Bullock, E. L., Woodcock, C. E., & Olofsson, P. (2020). Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis. Remote Sensing of Environment, 238, 110968. https://doi.org/10.1016/j.rse.2018.11.011
Bullock, E. L., Woodcock, C. E., Souza, C., & Olofsson, P. (2020). Satellite-based estimates reveal widespread forest degradation in the Amazon. Global Change Biology, 26(5), 2956-2969. https://doi.org/10.1111/gcb.15029
Burivalova, Z., Şekercioğlu, Ç. H., & Koh, L. P. (2014). Thresholds of logging intensity to maintain tropical forest biodiversity. Current Biology, 24(16), 1893-1898. https://doi.org/10.1016/j.cub.2014.06.065
Bustamante, M. M. C., Roitman, I., Aide, T. M., Alencar, A., Anderson, L. O., Aragão, L., Asner, G. P., Barlow, J., Berenguer, E., Chambers, J., Costa, M. H., Fanin, T., Ferreira, L. G., Ferreira, J., Keller, M., Magnusson, W. E., Morales-Barquero, L., Morton, D., Ometto, J. P., … Vieira, I. C. G. (2016). Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Global Change Biology, 22(1), 92-109. https://doi.org/10.1111/gcb.13087
Capellesso, E. S., Cequinel, A., Marques, R., & Marques, M. C. M. (2020). Temporal and environmental correlates of carbon stocks in a regenerating tropical forest. Applied Vegetation Science, 23(3), 353-362. https://doi.org/10.1111/AVSC.12487
Chambers, J. Q., Negrón-Juárez, R. I., Hurtt, G. C., Marra, D. M., & Higuchi, N. (2009). Lack of intermediate-scale disturbance data prevents robust extrapolation of plot-level tree mortality rates for old-growth tropical forests. Ecology Letters, 12(12), E22-E25. https://doi.org/10.1111/J.1461-0248.2009.01398.X
Chambers, J. Q., Negron-Juarez, R. I., Marra, D. M., Di Vittorio, A., Tews, J., Roberts, D., Ribeiro, G. H. P. M., Trumbore, S. E., & Higuchi, N. (2013). The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3949-3954. https://doi.org/10.1073/pnas.1202894110
Chambers, J. Q., Robertson, A. L., Carneiro, V. M., Lima, A. J., Smith, M. L., Plourde, L. C., & Higuchi, N. (2009). Hyperspectral remote detection of niche partitioning among canopy trees driven by blowdown gap disturbances in the Central Amazon. Oecologia, 160(1), 107-117. https://doi.org/10.1007/s00442-008-1274-9
Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T.-J. (2004). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters, 8(2), 148-159. https://doi.org/10.1111/j.1461-0248.2004.00707.x
Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., & Perez, R. (2004). Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1443), 409-420. https://doi.org/10.1098/RSTB.2003.1425
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351-366. https://doi.org/10.1111/j.1461-0248.2009.01285.x
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177-3190. https://doi.org/10.1111/gcb.12629
Chazdon, R. L. (2003). Tropical forest recovery: Legacies of human impact and natural disturbances. Perspectives in Plant Ecology, Evolution and Systematics, 6(1-2), 51-71. https://doi.org/10.1078/1433-8319-00042
Chazdon, R. L. (2014). Second growth: The promise of tropical forest regeneration in an age of deforestation. The University of Chicago Press.
Chen, N., Tsendbazar, N. E., Hamunyela, E., Verbesselt, J., & Herold, M. (2021). Sub-annual tropical forest disturbance monitoring using harmonized Landsat and Sentinel-2 data. International Journal of Applied Earth Observation and Geoinformation, 102, 102386. https://doi.org/10.1016/J.JAG.2021.102386
Clark, D. (1990). The role of disturbance in the regeneration of Neotropical moist forests. In K. Bawa & M. Hadley (Eds.), Chapter 21: Reproductive ecology of tropical forest plants (pp. 291-305). UNESCO/Parthenon.
Clement, C. R., Denevan, W. M., Heckenberger, M. J., Junqueira, A. B., Neves, E. G., Teixeira, W. G., & Woods, W. I. (2015). The domestication of Amazonia before European conquest. Proceedings of the Royal Society B: Biological Sciences, 282(1812), 20150813. https://doi.org/10.1098/RSPB.2015.0813
Crk, T., Uriarte, M., Corsi, F., & Flynn, D. (2009). Forest recovery in a tropical landscape: What is the relative importance of biophysical, socioeconomic, and landscape variables? Landscape Ecology, 24(5), 629-642. https://doi.org/10.1007/s10980-009-9338-8
de Avila, A. L., van der Sande, M. T., Dormann, C. F., Peña-Claros, M., Poorter, L., Mazzei, L., Ruschel, A. R., Silva, J. N. M., de Carvalho, J. O. P., & Bauhus, J. (2018). Disturbance intensity is a stronger driver of biomass recovery than remaining tree-community attributes in a managed Amazonian forest. Journal of Applied Ecology, 55(4), 1647-1657. https://doi.org/10.1111/1365-2664.13134
Decuyper, M., Chávez, R. O., Lohbeck, M., Lastra, J. A., Tsendbazar, N., Hackländer, J., Herold, M., & Vågen, T. G. (2022). Continuous monitoring of forest change dynamics with satellite time series. Remote Sensing of Environment, 269, 112829. https://doi.org/10.1016/j.rse.2021.112829
DeVries, B., Decuyper, M., Verbesselt, J., Zeileis, A., Herold, M., & Joseph, S. (2015). Tracking disturbance-regrowth dynamics in tropical forests using structural change detection and Landsat time series. Remote Sensing of Environment, 169, 320-334. https://doi.org/10.1016/j.rse.2015.08.020
DeVries, B., Verbesselt, J., Kooistra, L., & Herold, M. (2015). Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series. Remote Sensing of Environment, 161, 107-121. https://doi.org/10.1016/j.rse.2015.02.012
Didham, R. K., Watts, C. H., & Norton, D. A. (2005). Are systems with strong underlying abiotic regimes more likely to exhibit alternative stable states? Oikos, 110, 409-416. https://doi.org/10.1111/j.0030-1299.2005.13883.x
Easterling, W., & Apps, M. (2005). Assessing the consequences of climate change for food and forest resources: A view from the IPCC. Climatic Change, 70, 165-189. https://doi.org/10.1007/s10584-005-5941-0
Edwards, D. P., Fisher, B., & Boyd, E. (2010). Protecting degraded rainforests: Enhancement of forest carbon stocks under REDD+. Conservation Letters, 3(5), 313-316. https://doi.org/10.1111/j.1755-263X.2010.00143.x
Espírito-Santo, F. D., Gloor, M., Keller, M., Malhi, Y., Saatchi, S., Nelson, B., Junior, R. C., Pereira, C., Lloyd, J., Frolking, S., Palace, M., Shimabukuro, Y. E., Duarte, V., Mendoza, A. M., López-González, G., Baker, T. R., Feldpausch, T. R., Brienen, R. J., Asner, G. P., … Phillips, O. L. (2014). Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nature Communications, 5(1), 3434. https://doi.org/10.1038/ncomms4434
Espírito-Santo, F. D., Keller, M., Braswell, B., Nelson, B. W., Frolking, S., & Vicente, G. (2010). Storm intensity and old-growth forest disturbances in the Amazon region. Geophysical Research Letters, 37(11), L11403. https://doi.org/10.1029/2010GL043146
Evans, J. (2018). -spatialEco-. R package version 0.1.1-1.
FAO. (2011). Assessing forest degradation: Towards the development of globally applicable guidelines. FAO.
Fischlin, A., Ayres, M., Karnosky, D., Kellomäki, S., Louman, B., Chin, O., Plattner, G.-K., Santoso, H., & Zamolodchikov, D. (2009). Future environmental impacts and vulnerabilities. IUFRO (International Union of Forestry Research Organizations) Secretariat.
Fisher, J. I., Hurtt, G. C., Thomas, R. Q., & Chambers, J. Q. (2008). Clustered disturbances lead to bias in large-scale estimates based on forest sample plots. Ecology Letters, 11(6), 554-563. https://doi.org/10.1111/J.1461-0248.2008.01169.X
França, F. M., Frazão, F. S., Korasaki, V., Louzada, J., & Barlow, J. (2017). Identifying thresholds of logging intensity on dung beetle communities to improve the sustainable management of Amazonian tropical forests. Biological Conservation, 216, 115-122. https://doi.org/10.1016/j.biocon.2017.10.014
Gao, B. C. (1996). NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3
Gardner, T. A., Burgess, N. D., Aguilar-Amuchastegui, N., Barlow, J., Berenguer, E., Clements, T., Danielsen, F., Ferreira, J., Foden, W., Kapos, V., Khan, S. M., Lees, A. C., Parry, L., Roman-Cuesta, R. M., Schmitt, C. B., Strange, N., Theilade, I., & Vieira, I. C. (2012). A framework for integrating biodiversity concerns into national REDD+ programmes. Biological Conservation, 154, 61-71. https://doi.org/10.1016/j.biocon.2011.11.018
Gatti, L. V., Basso, L. S., Miller, J. B., Gloor, M., Gatti Domingues, L., Cassol, H. L., Tejada, G., Aragão, L. E. O. C., Nobre, C., Peters, W., Marani, L., Arai, E., Sanches, A. H., Corrêa, S. M., Anderson, L., Von Randow, C., Correia, C. S. C., Crispim, S. P., & Neves, R. A. (2021). Amazonia as a carbon source linked to deforestation and climate change. Nature, 595(7867), 388-393. https://doi.org/10.1038/s41586-021-03629-6
Ghazoul, J., Burivalova, Z., Garcia-Ulloa, J., & King, L. A. (2015). Conceptualizing forest degradation. Trends in Ecology & Evolution, 30(10), 622-632. https://doi.org/10.1016/J.TREE.2015.08.001
Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, J., Peres, C. A., Bradshaw, C. J., Laurance, W. F., Lovejoy, T. E., & Sodhi, N. S. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 478(7369), 378-381. https://doi.org/10.1038/nature10425
Goodwin, N. R., Coops, N. C., Wulder, M. A., Gillanders, S., Schroeder, T. A., & Nelson, T. (2008). Estimation of insect infestation dynamics using a temporal sequence of Landsat data. Remote Sensing of Environment, 112(9), 3680-3689. https://doi.org/10.1016/J.RSE.2008.05.005
Gora, E. M., & Esquivel-Muelbert, A. (2021). Implications of size-dependent tree mortality for tropical forest carbon dynamics. Nature Plants, 7(4), 384-391. https://doi.org/10.1038/S41477-021-00879-0
Goslee, K. M., Pearson, T. R., Bernal, B., Simon, S. L., & Sukhdeo, H. (2020). Comprehensive accounting for redd+ programs: A pragmatic approach as exemplified in Guyana. Forests, 11(12), 1-13. https://doi.org/10.3390/f11121265
Hamunyela, E., Brandt, P., Shirima, D., Do, H. T. T., Herold, M., & Roman-Cuesta, R. M. (2020). Spacetime detection of deforestation, forest degradation and regeneration in montane forests of Eastern Tanzania. International Journal of Applied Earth Observation and Geoinformation, 88, 102063. https://doi.org/10.1016/j.jag.2020.102063
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850-853. https://doi.org/10.1126/science.1244693
Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., de Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M. C., Herold, M., Houghton, R. A., Potapov, P. V., Suarez, D. R., Roman-Cuesta, R. M., Saatchi, S. S., Slay, C. M., Turubanova, S. A., & Tyukavina, A. (2021). Global maps of twenty-first century forest carbon fluxes. Nature Climate Change., 11, 234-240. https://doi.org/10.1038/s41558-020-00976-6
Hayes, D. J., & Cohen, W. B. (2007). Spatial, spectral and temporal patterns of tropical forest cover change as observed with multiple scales of optical satellite data. Remote Sensing of Environment, 106(1), 1-16. https://doi.org/10.1016/J.RSE.2006.07.002
Heinrich, V. H. A., Dalagnol, R., Cassol, H. L. G., Rosan, T. M., de Almeida, C. T., Silva Junior, C. H. L., Campanharo, W. A., House, J. I., Sitch, S., Hales, T. C., Adami, M., Anderson, L. O., & Aragão, L. E. O. C. (2021). Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nature Communications, 12(1), 1785. https://doi.org/10.1038/s41467-021-22050-1
Herold, M., Román-Cuesta, R. M., Mollicone, D., Hirata, Y., Van Laake, P., Asner, G. P., Souza, C., Skutsch, M., Avitabile, V., & MacDicken, K. (2011). Options for monitoring and estimating historical carbon emissions from forest degradation in the context of REDD+. Carbon Balance and Management, 6, 13. https://doi.org/10.1186/1750-0680-6-13
Hijmans, R. J. (2019). raster: Geographic data analysis and modeling. R package version 2.8-19.
ISRIC. (2020). SoilGrids250m - global gridded soil information.
Jakovac, C. C., Peña-Claros, M., Kuyper, T. W., & Bongers, F. (2015). Loss of secondary-forest resilience by land-use intensification in the Amazon. Journal of Ecology, 103(1), 67-77. https://doi.org/10.1111/1365-2745.12298
Jarvis, A., Reuter, H., Nelson, A., & Guevara, E. (2008). Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT).
Jin, S., & Sader, S. A. (2005). Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sensing of Environment, 94(3), 364-372.
Karsten, R. J., Jovanovic, M., Meilby, H., Perales, E., & Reynel, C. (2013). Regeneration in canopy gaps of tierra-firme forest in the Peruvian Amazon: Comparing reduced impact logging and natural, unmanaged forests. Forest Ecology and Management, 310, 663-671. https://doi.org/10.1016/j.foreco.2013.09.006
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1-26. https://doi.org/10.18637/jss.v082.i13
Laurance, W. F., Camargo, J. L., Luizão, R. C., Laurance, S. G., Pimm, S. L., Bruna, E. M., Stouffer, P. C., Williamson, G. B., Benítez-Malvido, J., Vasconcelos, H. L., van Houtan, K. S., Zartman, C. E., Boyle, S. A., Didham, R. K., Andrade, A., & Lovejoy, T. E. (2011). The fate of Amazonian forest fragments: A 32-year investigation. Biological Conservation, 144(1), 56-67. https://doi.org/10.1016/j.biocon.2010.09.021
Laurance, W. F., Goosem, M., & Laurance, S. G. (2009). Impacts of roads and linear clearings on tropical forests. Trends in Ecology & Evolution, 24(12), 659-669. https://doi.org/10.1016/j.tree.2009.06.009
Levine, N. M., Zhang, K., Longo, M., Baccini, A., Phillips, O. L., Lewis, S. L., Alvarez-Dávila, E., de Andrade, A. C. . S., Brienen, R. J. W., Erwin, T. L., Feldpausch, T. R., Mendoza, A. L. . M., Vargas, P. N., Prieto, A., Silva-Espejo, J. E., Malhi, Y., & Moorcroft, P. R. (2016). Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proceedings of the National Academy of Sciences of the United States of America, 113(3), 793-797. https://doi.org/10.1073/pnas.1511344112
Levis, C., Costa, F. R., Bongers, F., Peña-Claros, M., Clement, C. R., Junqueira, A. B., Neves, E. G., Tamanaha, E. K., Figueiredo, F. O., Salomão, R. P., Castilho, C. V., Magnusson, W. E., Phillips, O. L., Guevara, J. E., Sabatier, D., Molino, J. F., López, D. C., Mendoza, A. M., Pitman, N. C., … Ter Steege, H. (2017). Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science, 355(6328), 925-931. https://doi.org/10.1126/science.aal0157
Lewis, S. L., Edwards, D. P., & Galbraith, D. (2015). Increasing human dominance of tropical forests. Science (New York, N.Y.), 349(6250), 827-832. https://doi.org/10.1126/science.aaa9932
Li, W., Ciais, P., Yue, C., Gasser, T., Peng, S., & Bastos, A. (2017). Gross changes in forest area shape the future carbon balance of tropical forests. Biogeosciences, 15, 91-103. https://doi.org/10.5194/bg-2017-291
Lima, T. A., Beuchle, R., Langner, A., Grecchi, R. C., Griess, V. C., & Achard, F. (2019). Comparing Sentinel-2 MSI and Landsat 8 OLI imagery for monitoring selective logging in the Brazilian Amazon. Remote Sensing, 11(8), 961. https://doi.org/10.3390/rs11080961
Longo, M., Keller, M., dos-Santos, M. N., Leitold, V., Pinagé, E. R., Baccini, A., Saatchi, S., Nogueira, E. M., Batistella, M., & Morton, D. C. (2016). Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon. Global Biogeochemical Cycles, 30(11), 1639-1660. https://doi.org/10.1002/2016GB005465
Magnabosco Marra, D., Trumbore, S. E., Higuchi, N., Ribeiro, G. H., Negrón-Juárez, R. I., Holzwarth, F., Rifai, S. W., dos Santos, J., Lima, A. J. N., Kinupp, V. F., Chambers, J. Q., & Wirth, C. (2018). Windthrows control biomass patterns and functional composition of Amazon forests. Global Change Biology, 24(12), 5867-5881. https://doi.org/10.1111/GCB.14457
Málaga, N., de Bruin, S., McRoberts, R. E., Arana Olivos, A., de la Cruz Paiva, R., Durán Montesinos, P., Suarez, D. R., & Herold, M. (2022). Precision of subnational forest AGB estimates within the Peruvian Amazonia using a global biomass map. International Journal of Applied Earth Observation and Geoinformation, 115, 103102. https://doi.org/10.1016/j.jag.2022.103102
Málaga, N., Hergoualc'h, K., Kapp, G., & Martius, C. (2021). Variation in vegetation and ecosystem carbon stock due to the conversion of disturbed forest to oil palm plantation in Peruvian Amazonia. Ecosystems, 24(2), 351-369. https://doi.org/10.1007/s10021-020-00521-8
Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R., & Zelazowski, P. (2014). Tropical forests in the Anthropocene. Annual Review of Environment and Resources, 39(1), 125-159. https://doi.org/10.1146/annurev-environ-030713-155141
Manuel Villa, P., Ali, A., Venâncio Martins, S., de Oliveira, N., Neto, S., Cristina Rodrigues, A., Teshome, M., Carvalho, F. . A., Heringer, G., & Gastauer, M. (2020). Stand structural attributes and functional trait composition overrule the effects of functional divergence on aboveground biomass during Amazon forest succession. Forest Ecology and Management, 477, 118481. https://doi.org/10.1016/j.foreco.2020.118481
Marra, D. M., Chambers, J. Q., Higuchi, N., Trumbore, S. E., Ribeiro, G. H., dos Santos, J., Negrón-Juárez, R. I., Reu, B., & Wirth, C. (2014). Large-scale wind disturbances promote tree diversity in a Central Amazon forest. PLoS One, 9(8), e103711. https://doi.org/10.1371/journal.pone.0103711
Martin, P. A., Newton, A. C., & Bullock, J. M. (2013). Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proceedings of the Royal Society B: Biological Sciences, 280(1773), 20132236. https://doi.org/10.1098/rspb.2013.2236
Mauya, E. W., Hansen, E. H., Gobakken, T., Bollandsås, O. M., Malimbwi, R. E., & Naesset, E. (2015). Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania. Carbon Balance and Management, 10(1), 1-14. https://doi.org/10.1186/s13021-015-0021-x
McMichael, C. N. (2021). Ecological legacies of past human activities in Amazonian forests. New Phytologist, 229(5), 2492-2496. https://doi.org/10.1111/NPH.16888
McRoberts, R. E., & Tomppo, E. O. (2007). Remote sensing support for national forest inventories. Remote Sensing of Environment, 110(4), 412-419. https://doi.org/10.1016/j.rse.2006.09.034
Meli, P., Holl, K. D., Rey Benayas, J. M., Jones, H. P., Jones, P. C., Montoya, D., & Moreno Mateos, D. (2017). A global review of past land use, climate, and active vs. passive restoration effects on forest recovery. PLoS One, 12(2), e0171368. https://doi.org/10.1371/journal.pone.0171368
MINAGRI. (2016). Memoria Descriptiva del Mapa de Ecozonas, Inventario Nacional Forestal y de Fauna Silvestre (INFFS)-Perú. SERFOR.
MINAGRI, & MINAM. (2016). Marco Metodológico del Inventario Nacional Forestal y de Fauna Silvestre - Perú. Ministerio de Agricultura y Riego (MINAGRI) - Servicio Nacional Forestal y de Fauna Silvestre (SERFOR) - Ministerio del Ambiente (MINAM) Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) Ministerio de Relaciones Exteriores de. Lima, Peru.
Moura, N. G., Lees, A. C., Andretti, C. B., Davis, B. J., Solar, R. R., Aleixo, A., Barlow, J., Ferreira, J., & Gardner, T. A. (2013). Avian biodiversity in multiple-use landscapes of the Brazilian Amazon. Biological Conservation, 167, 339-348. https://doi.org/10.1016/j.biocon.2013.08.023
Murillo-Sandoval, P. J., Hilker, T., Krawchuk, M. A., & Van Den Hoek, J. (2018). Detecting and attributing drivers of forest disturbance in the Colombian Andes using landsat time-series. Forests, 9(5), 269. https://doi.org/10.3390/f9050269
Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133-142. https://doi.org/10.1111/j.2041-210x.2012.00261.x
Negrón-Juárez, R. I., Chambers, J. Q., Marra, D. M., Ribeiro, G. H., Rifai, S. W., Higuchi, N., & Roberts, D. (2011). Detection of subpixel treefall gaps with Landsat imagery in Central Amazon forests. Remote Sensing of Environment, 115(12), 3322-3328. https://doi.org/10.1016/J.RSE.2011.07.015
Negrón-Juárez, R. I., Holm, J. A., Faybishenko, B., Magnabosco-Marra, D., Fisher, R. A., Shuman, J. K., De Araujo, A. C., Riley, W. J., & Chambers, J. Q. (2020). Landsat near-infrared (NIR) band and ELM-FATES sensitivity to forest disturbances and regrowth in the Central Amazon. Biogeosciences, 17(23), 6185-6205. https://doi.org/10.5194/BG-17-6185-2020
Negrón-Juárez, R. I., Holm, J. A., Marra, D. M., Rifai, S. W., Riley, W. J., Chambers, J. Q., Koven, C. D., Knox, R. G., McGroddy, M. E., & Higuchi, N. (2018). Vulnerability of Amazon forests to storm-driven tree mortality. Environmental Research Letters, 13(5), 054021. https://doi.org/10.1088/1748-9326/AABE9F
Nesha, M. K., Herold, M., De Sy, V., Duchelle, A. E., Martius, C., Branthomme, A., Garzuglia, M., Jonsson, O., & Pekkarinen, A. (2021). An assessment of data sources, data quality and changes in national forest monitoring capacities in the Global Forest Resources Assessment 2005-2020. Environmental Research Letters, 16, 054029. https://doi.org/10.1088/1748-9326/abd81b
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2019). Vegan: Community ecology package. R package version 2.5-6.
OpenStreetMap Contributors. (2020). OpenStreetMap data as of 2020-05-10.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the World's forests. Science, 333(6045), 988-993. https://doi.org/10.1126/science.1204588
Perry, J., Lojka, B., Ruiz, L. G., Van Damme, P., Houška, J., & Cusimamani, E. F. (2016). How natural forest conversion affects insect biodiversity in the Peruvian Amazon: Can agroforestry help? Forests, 7(4), 82. https://doi.org/10.3390/f7040082
Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L., Fisher, J. B., Lloyd, J., López-González, G., Malhi, Y., Monteagudo, A., Peacock, J., Quesada, C. A., van der Heijden, G., Almeida, S., Amaral, I., Arroyo, L., Aymard, G., Baker, T. R., Bánki, O., Blanc, L., Bonal, D., … Torres-Lezama, A. (2009). Drought sensitivity of the Amazon rainforest. Science, 323(5919), 1344-1347. https://doi.org/10.1126/science.1146961
Pickett, S. T., & White, P. S. (1985). The ecology of natural disturbance and patch dynamics. Academic Press.
Plataforma Geobosques. (2021). Mapas de Uso y Cambio de Uso Periodo 2000-2019.
Poorter, L., Bongers, F., Aide, T., Almeyda Zambrano, A., Balvanera, P., Becknell, J., Boukili, V., Brancalion, P. H., Broadbent, E. N., Chazdon, R. L., Craven, D., de Almeida-Cortez, J. S., Cabral, G. A., de Jong, B. H., Denslow, J. S., Dent, D. H., DeWalt, S. J., Dupuy, J. M., Durán, S. M., … Rozendaal, D. (2016). Biomass resilience of Neotropical secondary forests. Nature, 530(7589), 211-214. https://doi.org/10.1038/nature16512
Poorter, L., van der Sande, M. T., Arets, E. J. M. M., Ascarrunz, N., Enquist, B. J., Finegan, B., Licona, J. C., Martínez-Ramos, M., Mazzei, L., Meave, J. A., Muñoz, R., Nytch, C. J., de Oliveira, A. A., Pérez-García, E. A., Prado-Junior, J., Rodríguez-Velázques, J., Ruschel, A. R., Salgado-Negret, B., Schiavini, I., … Peña-Claros, M. (2017). Biodiversity and climate determine the functioning of Neotropical forests. Global Ecology and Biogeography, 26(12), 1423-1434. https://doi.org/10.1111/geb.12668
Pugh, T. A., Arneth, A., Kautz, M., Poulter, B., & Smith, B. (2019). Important role of forest disturbances in the global biomass turnover and carbon sinks. Nature Geoscience, 12(9), 730-735. https://doi.org/10.1038/s41561-019-0427-2
Putz, F. E., Zuidema, P. A., Synnott, T., Peña-Claros, M., Pinard, M. A., Sheil, D., Vanclay, J. K., Sist, P., Gourlet-Fleury, S., Griscom, B., Palmer, J., & Zagt, R. (2012). Sustaining conservation values in selectively logged tropical forests: The attained and the attainable. Conservation Letters, 5(4), 296-303. https://doi.org/10.1111/j.1755-263X.2012.00242.x
Pyles, M. V., Prado-Junior, J. A., Magnago, L. F., de Paula, A., & Meira-Neto, J. A. (2018). Loss of biodiversity and shifts in aboveground biomass drivers in tropical rainforests with different disturbance histories. Biodiversity and Conservation, 27(12), 3215-3231. https://doi.org/10.1007/s10531-018-1598-7
R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Rappaport, D. I., Morton, D. C., Longo, M., Keller, M., Dubayah, R., & Dos-Santos, M. N. (2018). Quantifying long-termchanges in carbon stocks and forest structure from Amazon forest degradation. Environmental Research Letters, 13(6), 065013. https://doi.org/10.1088/1748-9326/aac331
Réjou-Méchain, M., Muller-Landau, H. C., Detto, M., Thomas, S. C., Le Toan, T., Saatchi, S. S., Barreto-Silva, J. S., Bourg, N. A., Bunyavejchewin, S., Butt, N., Brockelman, W. Y., Cao, M., Cárdenas, D., Chiang, J. M., Chuyong, G. B., Clay, K., Condit, R., Dattaraja, H. S., Davies, S. J., … Chave, J. (2014). Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences, 11(23), 6827-6840. https://doi.org/10.5194/bg-11-6827-2014
Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J., & Hérault, B. (2017). BIOMASS: An R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 8(9), 1163-1167. https://doi.org/10.1111/2041-210X.12753
Requena Suarez, D., Rozendaal, D. M., De Sy, V., Gibbs, D. A., Harris, N. L., Sexton, J. O., Feng, M., Channan, S., Zahabu, E., & Herold, M. (2021). Variation in aboveground biomass in forests and woodlands in Tanzania along gradients in environmental conditions and human use. Environmental Research Letters, 16(4), 44014. https://doi.org/10.1088/1748-9326/abe960
Requena Suarez, D., Rozendaal, D. M., De Sy, V., Phillips, O. L., Alvarez-Dávila, E., Anderson-Teixeira, K., Araujo-Murakami, A., Arroyo, L., Baker, T. R., Bongers, F., Brienen, R. J. W., Carter, S., Cook-Patton, S. C., Feldpausch, T. R., Griscom, B. W., Harris, N., Hérault, B., Honorio Coronado, E. N., Leavitt, S. M., … Herold, M. (2019). Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data. Global Change Biology, 25(11), 3609-3624. https://doi.org/10.1111/gcb.14767
Rifai, S. W., Urquiza Muñoz, J. D., Negrón-Juárez, R. I., Ramírez Arévalo, F. R., Tello-Espinoza, R., Vanderwel, M. C., Lichstein, J. W., Chambers, J. Q., & Bohlman, S. A. (2016). Landscape-scale consequences of differential tree mortality from catastrophic wind disturbance in the Amazon. Ecological Applications, 26(7), 2225-2237. https://doi.org/10.1002/EAP.1368
Rocha, G. P., Vieira, D. L., & Simon, M. F. (2016). Fast natural regeneration in abandoned pastures in southern Amazonia. Forest Ecology and Management, 370, 93-101. https://doi.org/10.1016/j.foreco.2016.03.057
Rozendaal, D. M., Bongers, F., Aide, T. M., Alvarez-Dávila, E., Ascarrunz, N., Balvanera, P., Becknell, J. M., Bentos, T. V., Brancalion, P. H. S., Cabral, G. A. L., Calvo-Rodriguez, S., Chave, J., César, R. G., Chazdon, R. L., Condit, R., Dallinga, J. S., de Almeida-Cortez, J. S., de Jong, B., de Oliveira, A., … Poorter, L. (2019). Biodiversity recovery of Neotropical secondary forests. Science Advances, 5(3), aau3114. https://doi.org/10.1126/sciadv.aau3114
Rutishauser, E., Hérault, B., Baraloto, C., Blanc, L., Descroix, L., Sotta, E., Ferreira, J., Kanashiro, M., Mazzei, L., d'Oliveira, M. V., de Oliveira, L. C., Peña-Claros, M., Putz, F. E., Ruschel, A. R., Rodney, K., Roopsind, A., Shenkin, A., da Silva, K. E., de Souza, C. R., … Sist, P. (2015). Rapid tree carbon stock recovery in managed Amazonian forests. Current Biology, 25(18), R787-R788. https://doi.org/10.1016/j.cub.2015.07.034
Sasaki, N., Asner, G. P., Knorr, W., Durst, P. B., Priyadi, H. R., & Putz, F. E. (2011). Approaches to classifying and restoring degraded tropical forests for the anticipated REDD+ climate change mitigation mechanism. IForest, 4(JANUARY), 1-6. https://doi.org/10.3832/ifor0556-004
Schielein, J. (2017). Potentially navigable rivers in South America. Harvard Dataverse, V1. https://doi.org/10.7910/DVN/1G8PZI
Schultz, M., Clevers, J. G., Carter, S., Verbesselt, J., Avitabile, V., Quang, H. V., & Herold, M. (2016). Performance of vegetation indices from Landsat time series in deforestation monitoring. International Journal of Applied Earth Observation and Geoinformation, 52, 318-327. https://doi.org/10.1016/J.JAG.2016.06.020
Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A., & Reyer, C. P. (2017). Forest disturbances under climate change. Nature Climate Change, 7, 395-402. https://doi.org/10.1038/nclimate3303
SERFOR. (2019). Inventario Nacional Forestal y de Fauna Silvestre del Peru. Manual de campo.
Silvério, D. V., Brando, P. M., Bustamante, M. M., Putz, F. E., Marra, D. M., Levick, S. R., & Trumbore, S. E. (2019). Fire, fragmentation, and windstorms: A recipe for tropical forest degradation. Journal of Ecology, 107(2), 656-667. https://doi.org/10.1111/1365-2745.13076
Sist, P., Rutishauser, E., Peña-Claros, M., Shenkin, A., Hérault, B., Blanc, L., Baraloto, C., Baya, F., Benedet, F., da Silva, K. E., Descroix, L., Ferreira, J. N., Gourlet-Fleury, S., Guedes, M. C., Harun, I. B., Jalonen, R., Kanashiro, M., Krisnawati, H., Kshatriya, M., … Yamada, T. (2015). The tropical managed forests observatory: A research network addressing the future of tropical logged forests. Applied Vegetation Science, 18(1), 171-174. https://doi.org/10.1111/avsc.12125
Slik, J. W. (2004). El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia, 141(1), 114-120. https://doi.org/10.1007/S00442-004-1635-Y/TABLES/4
Sullivan, M. J. P., Talbot, J., Lewis, S. L., Phillips, O. L., Qie, L., Begne, S. K., Chave, J., Cuni-Sanchez, A., Hubau, W., Lopez-Gonzalez, G., Miles, L., Monteagudo-Mendoza, A., Sonké, B., Sunderland, T., ter Steege, H., White, L. J. T., Affum-Baffoe, K., Aiba, S.-i., de Almeida, E. C., … Zemagho, L. (2017). Diversity and carbon storage across the tropical forest biome. Scientific Reports, 7, 39102. https://doi.org/10.1038/srep39102
Thompson, I., Mackey, B., Mcnulty, S., & Mosseler, A. (2009). Forest resilience, biodiversity, and climate change: A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems. Secretariat of the Convention on Biological Diversity, Montreal. Technical Series no. 43, pp. 1-67.
Urquiza Muñoz, D. J., Marra, D. M., Negrón-Juarez, R. I., Tello-Espinoza, R., Alegría-Muñoz, W., Pacheco-Gómez, T., Rifai, S. W., Chambers, J. Q., Jenkins, H. S., Brenning, A., & Trumbore, S. E. (2021). Recovery of forest structure following large-scale windthrows in the northwestern amazon. Forests, 12(6), 667. https://doi.org/10.3390/f12060667
Van Loon, A. F., Gleeson, T., Clark, J., Van Dijk, A. I. J. M., Stahl, K., Hannaford, J., Di Baldassarre, G., Teuling, A. J., Tallaksen, L. M., Uijlenhoet, R., Hannah, D. M., Sheffield, J., Svoboda, M., Verbeiren, B., Wagener, T., Rangecroft, S., Wanders, N., & Van Lanen, H. A. J. (2016). Drought in the Anthropocene. Nature Geoscience, 9(2), 89-91. https://doi.org/10.1038/ngeo2646
Vásquez-Grandón, A., Donoso, P. J., & Gerding, V. (2018). Forest degradation: When is a forest degraded? Forests, 9(11), 726. https://doi.org/10.3390/F9110726
Verbesselt, J., Hyndman, R., Zeileis, A., & Culvenor, D. (2010). Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sensing of Environment, 114(12), 2970-2980. https://doi.org/10.1016/j.rse.2010.08.003
Vidal, E., West, T. A., & Putz, F. E. (2016). Recovery of biomass and merchantable timber volumes twenty years after conventional and reduced-impact logging in Amazonian Brazil. Forest Ecology and Management, 376, 1-8. https://doi.org/10.1016/j.foreco.2016.06.003
Viljur, M. L., Abella, S. R., Adámek, M., Alencar, J. B. R., Barber, N. A., Beudert, B., Burkle, L. A., Cagnolo, L., Campos, B. R., Chao, A., Chergui, B., Choi, C. Y., Cleary, D. F. R., Davis, T. S., Dechnik-Vázquez, Y. A., Downing, W. M., Fuentes-Ramirez, A., Gandhi, K. J. K., Gehring, C., … Thorn, S. (2022). The effect of natural disturbances on forest biodiversity: An ecological synthesis. Biological Reviews, 97(5), 1930-1947. https://doi.org/10.1111/BRV.12876
Wagner, F., Rutishauser, E., Blanc, L., & Herault, B. (2010). Effects of plot size and census interval on descriptors of forest structure and dynamics. Biotropica, 42(6), 664-671. https://doi.org/10.1111/J.1744-7429.2010.00644.X
Wilson, E. H., & Sader, S. A. (2002). Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment, 80(3), 385-396. https://doi.org/10.1016/S0034-4257(01)00318-2
Zanne, A., Lopez-Gonzalez, G., Coomes, D., Ilic, J., Jansen, S., Lewis, S., Swenson, N. G., & Chave, J. (2009). Data from: Towards a worldwide wood economics spectrum. [Dryad Data set]. https://doi.org/10.5061/dryad.234