Highly connected 3D chromatin networks established by an oncogenic fusion protein shape tumor cell identity.
Journal
Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440
Informations de publication
Date de publication:
31 03 2023
31 03 2023
Historique:
medline:
4
4
2023
entrez:
31
3
2023
pubmed:
1
4
2023
Statut:
ppublish
Résumé
Cell fate transitions observed in embryonic development involve changes in three-dimensional genomic organization that provide proper lineage specification. Whether similar events occur within tumor cells and contribute to cancer evolution remains largely unexplored. We modeled this process in the pediatric cancer Ewing sarcoma and investigated high-resolution looping and large-scale nuclear conformation changes associated with the oncogenic fusion protein EWS-FLI1. We show that chromatin interactions in tumor cells are dominated by highly connected looping hubs centered on EWS-FLI1 binding sites, which directly control the activity of linked enhancers and promoters to establish oncogenic expression programs. Conversely, EWS-FLI1 depletion led to the disassembly of these looping networks and a widespread nuclear reorganization through the establishment of new looping patterns and large-scale compartment configuration matching those observed in mesenchymal stem cells, a candidate Ewing sarcoma progenitor. Our data demonstrate that major architectural features of nuclear organization in cancer cells can depend on single oncogenes and are readily reversed to reestablish latent differentiation programs.
Identifiants
pubmed: 37000878
doi: 10.1126/sciadv.abo3789
doi:
Substances chimiques
Chromatin
0
RNA-Binding Protein EWS
0
Oncogene Proteins, Fusion
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
eabo3789Références
Nat Methods. 2018 Feb 28;15(3):155-156
pubmed: 29489746
Cell. 2017 Sep 21;171(1):163-178.e19
pubmed: 28844694
Cold Spring Harb Symp Quant Biol. 2016;81:41-51
pubmed: 28424341
Cell Res. 2016 Dec;26(12):1345-1348
pubmed: 27886167
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Curr Opin Genet Dev. 2016 Feb;36:1-7
pubmed: 26855137
Science. 2009 Oct 9;326(5950):289-93
pubmed: 19815776
Nat Genet. 2017 Oct;49(10):1522-1528
pubmed: 28805829
Nat Rev Mol Cell Biol. 2021 Aug;22(8):511-528
pubmed: 33953379
Bioinformatics. 2014 Apr 1;30(7):923-30
pubmed: 24227677
PLoS One. 2009;4(3):e4932
pubmed: 19305498
Cell Cycle. 2020 Oct;19(19):2395-2410
pubmed: 32783593
Cell. 2014 Dec 18;159(7):1665-80
pubmed: 25497547
Nat Genet. 2018 Feb;50(2):238-249
pubmed: 29335546
Nat Immunol. 2018 Nov;19(11):1257-1264
pubmed: 30323344
Nat Commun. 2017 Dec 5;8(1):1937
pubmed: 29203764
Cell Genom. 2022 Apr 13;2(4):
pubmed: 35967079
Cancer Cell. 2014 Nov 10;26(5):668-681
pubmed: 25453903
Nat Rev Mol Cell Biol. 2016 Dec;17(12):771-782
pubmed: 27826147
Nat Methods. 2016 Nov;13(11):919-922
pubmed: 27643841
Cancer Cell. 2007 May;11(5):421-9
pubmed: 17482132
Nature. 2019 Jun;570(7761):395-399
pubmed: 31168090
Cell. 2020 Sep 17;182(6):1474-1489.e23
pubmed: 32841603
Nature. 2007 Aug 2;448(7153):553-60
pubmed: 17603471
Stem Cells Transl Med. 2021 Apr;10(4):522-533
pubmed: 33258291
Nature. 1992 Sep 10;359(6391):162-5
pubmed: 1522903
Biochim Biophys Acta Rev Cancer. 2019 Aug;1872(1):11-23
pubmed: 31034924
Nat Genet. 2019 Aug;51(8):1272-1282
pubmed: 31308546
Cell. 2013 Nov 7;155(4):934-47
pubmed: 24119843
Cell. 2017 May 4;169(4):693-707.e14
pubmed: 28475897
Science. 2013 Mar 29;339(6127):1567-70
pubmed: 23539597
Cancer Res. 2008 Apr 1;68(7):2176-85
pubmed: 18381423
Hum Mol Genet. 2020 Oct 20;29(R2):R197-R204
pubmed: 32619215
Trends Biochem Sci. 2020 May;45(5):385-396
pubmed: 32311333
Cell. 2017 May 18;169(5):930-944.e22
pubmed: 28525758
Nature. 2015 Feb 19;518(7539):317-30
pubmed: 25693563
Nature. 2012 Apr 11;485(7398):381-5
pubmed: 22495304
Nat Genet. 2020 Apr;52(4):388-400
pubmed: 32203470
EMBO Mol Med. 2021 Mar 5;13(3):e12670
pubmed: 33555144
Genome Biol. 2008;9(9):R137
pubmed: 18798982
Nat Rev Cancer. 2021 Jul;21(7):413-430
pubmed: 34002060
Cancer Res. 2005 Dec 15;65(24):11459-68
pubmed: 16357154
Mol Cell. 2010 May 28;38(4):576-89
pubmed: 20513432
Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):E6697-E6706
pubmed: 29967174
Nat Rev Genet. 2018 Dec;19(12):789-800
pubmed: 30367165
Stem Cell Reports. 2020 Dec 8;15(6):1176-1195
pubmed: 33242398
Cell Stem Cell. 2016 May 5;18(5):597-610
pubmed: 26971819
Immunity. 2018 Feb 20;48(2):227-242.e8
pubmed: 29466755
Cancer Sci. 2020 Aug;111(8):2689-2695
pubmed: 32462706
Nature. 2019 May;569(7756):345-354
pubmed: 31092938
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Nat Rev Genet. 2018 Jul;19(7):453-467
pubmed: 29692413
Cell. 2019 Jun 13;177(7):1888-1902.e21
pubmed: 31178118
N Engl J Med. 2021 Jan 14;384(2):154-164
pubmed: 33497548
Cell Cycle. 2008 Oct;7(20):3127-32
pubmed: 18927503
Nature. 2012 Apr 11;485(7398):376-80
pubmed: 22495300
Nat Rev Mol Cell Biol. 2019 Sep;20(9):535-550
pubmed: 31197269
Genes Dev. 2018 Aug 1;32(15-16):1008-1019
pubmed: 30042132
Bioinformatics. 2018 Feb 15;34(4):672-674
pubmed: 29028898
Nat Rev Cancer. 2018 Feb;18(2):117-127
pubmed: 29192213
Genome Biol. 2015 Sep 28;16:214
pubmed: 26415882
Nature. 2015 Feb 19;518(7539):360-364
pubmed: 25693567
Genes Dev. 2010 May;24(9):916-32
pubmed: 20382729
Genome Biol. 2015 Dec 01;16:259
pubmed: 26619908
Cell. 2017 Oct 19;171(3):557-572.e24
pubmed: 29053968
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
Mol Cell. 2019 Mar 21;73(6):1174-1190.e12
pubmed: 30745086
Nature. 2017 Nov 2;551(7678):51-56
pubmed: 29094699
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):996-1001
pubmed: 24335803
Cancer Discov. 2014 Nov;4(11):1326-41
pubmed: 25186949
Nat Methods. 2012 Oct;9(10):999-1003
pubmed: 22941365
Nat Cell Biol. 2019 Oct;21(10):1179-1190
pubmed: 31548608
Nature. 2015 Feb 19;518(7539):331-6
pubmed: 25693564
Nat Rev Genet. 2019 Aug;20(8):437-455
pubmed: 31086298
Genome Res. 2019 Aug;29(8):1211-1222
pubmed: 31249064
Cell. 2012 Feb 3;148(3):458-72
pubmed: 22265598