Predicting COVID-19 positivity and hospitalization with multi-scale graph neural networks.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
31 03 2023
Historique:
received: 06 06 2022
accepted: 08 03 2023
medline: 4 4 2023
entrez: 31 3 2023
pubmed: 1 4 2023
Statut: epublish

Résumé

The pandemic of COVID-19 is undoubtedly one of the biggest challenges for modern healthcare. In order to analyze the spatio-temporal aspects of the spread of COVID-19, technology has helped us to track, identify and store information regarding positivity and hospitalization, across different levels of municipal entities. In this work, we present a method for predicting the number of positive and hospitalized cases via a novel multi-scale graph neural network, integrating information from fine-scale geographical zones of a few thousand inhabitants. By leveraging population mobility data and other features, the model utilizes message passing to model interaction between areas. Our proposed model manages to outperform baselines and deep learning models, presenting low errors in both prediction tasks. We specifically point out the importance of our contribution in predicting hospitalization since hospitals became critical infrastructure during the pandemic. To the best of our knowledge, this is the first work to exploit high-resolution spatio-temporal data in a multi-scale manner, incorporating additional knowledge, such as vaccination rates and population mobility data. We believe that our method may improve future estimations of positivity and hospitalization, which is crucial for healthcare planning.

Identifiants

pubmed: 37002271
doi: 10.1038/s41598-023-31222-6
pii: 10.1038/s41598-023-31222-6
pmc: PMC10066232
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5235

Informations de copyright

© 2023. The Author(s).

Références

Chaos Solitons Fractals. 2020 Oct;139:110058
pubmed: 32834611
IEEE Trans Neural Netw Learn Syst. 2021 Jan;32(1):4-24
pubmed: 32217482
Results Phys. 2021 Jun;25:104285
pubmed: 33977079
Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):2802-2804
pubmed: 30737293
Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27087-27089
pubmed: 33060300
Sci Total Environ. 2020 Aug 1;728:138870
pubmed: 32335408
Int J Environ Res Public Health. 2021 Apr 06;18(7):
pubmed: 33917544
Neural Comput. 1997 Nov 15;9(8):1735-80
pubmed: 9377276
Sci Rep. 2021 Mar 26;11(1):6967
pubmed: 33772048
Results Phys. 2022 Feb;33:105177
pubmed: 35070649
Nat Commun. 2021 Aug 5;12(1):4720
pubmed: 34354055
Science. 2020 Apr 10;368(6487):145-146
pubmed: 32205458
Chaos Solitons Fractals. 2022 Sep;162:112443
pubmed: 36068915
Chaos Solitons Fractals. 2020 Nov;140:110107
pubmed: 33519107
Appl Math Comput. 2021 Sep 1;404:126251
pubmed: 33828346
Results Phys. 2022 Mar;34:105224
pubmed: 35096521
Chaos Solitons Fractals. 2020 Jun;135:109846
pubmed: 32341628
CMAJ. 2020 May 11;192(19):E497-E505
pubmed: 32269018
Chaos Solitons Fractals. 2020 Jun;135:109864
pubmed: 32390691
Sci Rep. 2022 Mar 10;12(1):3930
pubmed: 35273252
Chaos Solitons Fractals. 2020 Nov;140:110203
pubmed: 32834663

Auteurs

Konstantinos Skianis (K)

BLUAI, Athens, Greece. skianis.konstantinos@gmail.com.

Giannis Nikolentzos (G)

École Polytechnique, Palaiseau, France.

Benoit Gallix (B)

IHU, Strasbourg, France.
ICube, CNRS, University of Strasbourg, Strasbourg, France.

Rodolphe Thiebaut (R)

INSERM U1219, Inria SISTM, University of Bordeaux, Bordeaux, France.
Pôle de Santé Publique, Service d'Information Médicale, CHU de Bordeaux, Bordeaux, France.

Georgios Exarchakis (G)

IHU, Strasbourg, France.
ICube, CNRS, University of Strasbourg, Strasbourg, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH