Above knee socket prosthesis use changes proximal femur morphology.
Above knee amputation
Digitally reconstructed radiographs
Femur morphology
Socket prosthesis
Statistical shape modeling
Transfemoral amputation
Journal
Bone
ISSN: 1873-2763
Titre abrégé: Bone
Pays: United States
ID NLM: 8504048
Informations de publication
Date de publication:
07 2023
07 2023
Historique:
received:
30
11
2022
revised:
03
03
2023
accepted:
26
03
2023
pmc-release:
01
07
2024
medline:
22
5
2023
pubmed:
3
4
2023
entrez:
2
4
2023
Statut:
ppublish
Résumé
Patients with transfemoral amputation (TFA) are up to six times more likely to develop hip osteoarthritis (OA) in either or both the intact and residual limb, which is primarily attributed to habitually altered joint loading due to compensatory movement patterns. However, joint loading patterns differ between limbs, which confounds the understanding of loading-induced OA etiology across limbs. It remains unknown if altered loading due to amputation results in bony shape changes at the hip, which is a known etiological factor in the development of hip OA. Retrospective computed tomography images were collected of the residual limb for 31 patients with unilateral TFA (13F/18M; age: 51.7 ± 9.9 y/o; time since amputation: 13.7 ± 12.4 years) and proximal femur for a control group of 29 patients (13F/16M; age: 42.0 ± 12.27 years) and used to create 3D geometries of the proximal femur. Femoral 3D geometric variation was quantified using statistical shape modeling (SSM), a computational tool which placed 2048 corresponding particles on each geometry. Independent modes of variation were created using principal component analysis. 2D radiographic measures of the proximal femur, including common measures such as α-angle, head neck offset, and neck shaft angle, were quantified on digitally reconstructed radiographs (DRRs). SSM results were then compared to 2D measures using Pearson correlation coefficients (r). Two-sample t-tests were used to determine if there were significant differences between the TFA and control group means of 2D radiographic measurements (p < 0.05). Patients with TFA had greater femoral head asphericity within the SSM, which was moderately correlated to head-neck offset (r = -0.54) and α-angle (r = 0.63), as well as greater trochanteric torsion, which was strongly correlated to the novel radiographic measure of trochanteric torsion (r = -0.78), compared to controls. For 2D measures, the neck-shaft angle was smaller in the TFA group compared to the control group (p = 0.01) while greater trochanter height was larger in the TFA group compared to the control group (p = 0.04). These results indicate altered loading from transfemoral prosthesis use changes proximal femur bony morphology, including femoral head asphericity and greater trochanter changes. Greater trochanter morphologic changes, though not a known factor to OA, affect moment arm and line of action of the primary hip abductors, the major muscles which contribute to joint loading and hip stability. Thus, chronic altered loading of the amputated limb hip, whether under- or overloading, results in bony changes to the proximal femur which may contribute to the etiological progression and development of OA.
Identifiants
pubmed: 37004980
pii: S8756-3282(23)00085-6
doi: 10.1016/j.bone.2023.116752
pmc: PMC10198956
mid: NIHMS1893015
pii:
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
116752Subventions
Organisme : NCATS NIH HHS
ID : UL1 TR002535
Pays : United States
Informations de copyright
Copyright © 2023 Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of competing interest There are no competing interests to disclose.
Références
J Orthop Res. 2018 Jan;36(1):330-341
pubmed: 28688198
Prosthet Orthot Int. 2000 Aug;24(2):117-25
pubmed: 11061198
Bone. 2013 Dec;57(2):355-60
pubmed: 24056176
Prosthet Orthot Int. 2003 Apr;27(1):36-47
pubmed: 12812326
Arch Phys Med Rehabil. 2009 Mar;90(3):440-6
pubmed: 19254609
PM R. 2014 Aug;6(8):698-707.e1
pubmed: 24487128
Adv Physiol Educ. 2009 Jun;33(2):87-90
pubmed: 19509392
Arthritis Care Res (Hoboken). 2014 Jan;66(1):74-81
pubmed: 23926053
Hum Mov Sci. 2012 Aug;31(4):907-17
pubmed: 22248566
Gait Posture. 2010 Feb;31(2):241-6
pubmed: 19932621
Prosthet Orthot Int. 2011 Dec;35(4):459-66
pubmed: 22005351
Prosthet Orthot Int. 1994 Apr;18(1):12-7
pubmed: 8084744
Calcif Tissue Int. 2000 Sep;67(3):207-14
pubmed: 10954774
Eur Radiol. 2017 Jul;27(7):3042-3049
pubmed: 27957636
Ann Rheum Dis. 1978 Jun;37(3):252-4
pubmed: 150823
Bone. 2012 Aug;51(2):197-203
pubmed: 22401752
Arch Phys Med Rehabil. 1995 Aug;76(8):736-43
pubmed: 7632129
Clin Orthop Relat Res. 2019 Jan;477(1):242-253
pubmed: 30179924
J Biomech. 2010 May 28;43(8):1618-22
pubmed: 20176362
J Orthop Res. 2019 Jan;37(1):161-170
pubmed: 30298950
Inf Process Med Imaging. 2007;20:333-45
pubmed: 17633711
PM R. 2012 May;4(5 Suppl):S20-7
pubmed: 22632698
Osteoarthritis Cartilage. 2014 Oct;22(10):1470-80
pubmed: 25278058
J Bone Miner Res. 2018 Nov;33(11):1999-2006
pubmed: 29920773
Sports Med Arthrosc Rev. 2015 Dec;23(4):174-9
pubmed: 26524551
Appl Bionics Biomech. 2018 Mar 19;2018:5190816
pubmed: 29755583
Clin Rehabil. 1998 Aug;12(4):348-53
pubmed: 9744670
Osteoarthritis Cartilage. 2013 Jan;21(1):10-5
pubmed: 23041436
Prosthet Orthot Int. 1997 Aug;21(2):129-40
pubmed: 9285957
J Orthop Res. 2013 Oct;31(10):1620-6
pubmed: 23832798
J Bone Joint Surg Am. 2004 Aug;86(8):1636-45
pubmed: 15292410
Osteoarthritis Cartilage. 2021 May;29(5):607-618
pubmed: 33338641
Clin Biomech (Bristol, Avon). 2022 Aug;98:105715
pubmed: 35839740
Clin Orthop Relat Res. 1995 Jul;(316):31-44
pubmed: 7634721
Arthritis Rheum. 2013 Aug;65(8):2048-58
pubmed: 23650083
Int J Sports Med. 2007 Dec;28(12):1035-9
pubmed: 17534787
Eur J Radiol. 2014 May;83(5):788-96
pubmed: 24613175
Osteoarthritis Cartilage. 2013 Mar;21(3):443-9
pubmed: 23274103
Clin Orthop Relat Res. 2009 Mar;467(3):666-75
pubmed: 19048356
Arch Phys Med Rehabil. 1988 Oct;69(10):840-5
pubmed: 3178451
PLoS One. 2020 Sep 2;15(9):e0238093
pubmed: 32877428
Sci Rep. 2021 Apr 1;11(1):7314
pubmed: 33795729
Arch Phys Med Rehabil. 2008 Mar;89(3):422-9
pubmed: 18295618
Comput Methods Biomech Biomed Engin. 2020 Nov;23(14):1071-1081
pubmed: 32691622
Am J Sports Med. 2012 May;40(5):1099-106
pubmed: 22415206
J Orthop Res. 2019 Mar;37(3):665-673
pubmed: 30656719
Clin Orthop Relat Res. 2003 Dec;(417):112-20
pubmed: 14646708
Acta Orthop Scand. 1982 Oct;53(5):781-4
pubmed: 7136589
J Vasc Surg. 2014 May;59(5):1323-30.e1
pubmed: 24406089
Gait Posture. 2018 Jun;63:228-235
pubmed: 29775910
Gait Posture. 2003 Apr;17(2):142-51
pubmed: 12633775
Osteoarthritis Cartilage. 2010 Jun;18(6):787-94
pubmed: 20171297
J Biomech. 2020 Sep 18;110:109968
pubmed: 32827786
Am Fam Physician. 2012 Jan 1;85(1):49-56
pubmed: 22230308
J Orthop Res. 2022 Jun;40(6):1387-1396
pubmed: 34415648
J Biomech. 2013 Sep 3;46(13):2186-93
pubmed: 23891175
J Bone Miner Res. 2008 Sep;23(9):1449-57
pubmed: 18410229
J Rehabil Res Dev. 2008;45(1):15-29
pubmed: 18566923
Gait Posture. 2021 Sep;89:169-177
pubmed: 34311436
J Forensic Sci. 2001 Jul;46(4):791-9
pubmed: 11451058
Bone. 2020 Sep;138:115461
pubmed: 32485363
JAMA. 2021 Feb 9;325(6):568-578
pubmed: 33560326