Genetic effects on the timing of parturition and links to fetal birth weight.
Journal
Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
received:
04
05
2022
accepted:
22
02
2023
medline:
17
4
2023
pubmed:
4
4
2023
entrez:
3
4
2023
Statut:
ppublish
Résumé
The timing of parturition is crucial for neonatal survival and infant health. Yet, its genetic basis remains largely unresolved. We present a maternal genome-wide meta-analysis of gestational duration (n = 195,555), identifying 22 associated loci (24 independent variants) and an enrichment in genes differentially expressed during labor. A meta-analysis of preterm delivery (18,797 cases, 260,246 controls) revealed six associated loci and large genetic similarities with gestational duration. Analysis of the parental transmitted and nontransmitted alleles (n = 136,833) shows that 15 of the gestational duration genetic variants act through the maternal genome, whereas 7 act both through the maternal and fetal genomes and 2 act only via the fetal genome. Finally, the maternal effects on gestational duration show signs of antagonistic pleiotropy with the fetal effects on birth weight: maternal alleles that increase gestational duration have negative fetal effects on birth weight. The present study provides insights into the genetic effects on the timing of parturition and the complex maternal-fetal relationship between gestational duration and birth weight.
Identifiants
pubmed: 37012456
doi: 10.1038/s41588-023-01343-9
pii: 10.1038/s41588-023-01343-9
pmc: PMC10101852
doi:
Types de publication
Meta-Analysis
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
559-567Subventions
Organisme : Wellcome Trust
ID : WT104150
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/P014054/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_00011/6
Pays : United Kingdom
Organisme : Wellcome Trust
ID : WT104150
Pays : United Kingdom
Organisme : NIAID NIH HHS
ID : R01 AI153356
Pays : United States
Organisme : Wellcome Trust
ID : WT220390
Pays : United Kingdom
Organisme : NICHD NIH HHS
ID : R01 HD034568
Pays : United States
Organisme : British Heart Foundation
ID : CH/F/20/90003
Pays : United Kingdom
Organisme : British Heart Foundation
ID : AA/18/7/34219
Pays : United Kingdom
Investigateurs
Mark I McCarthy
(MI)
Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2023. The Author(s).
Références
Chawanpaiboon, S. et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob. Health 7, e37–e46 (2019).
pubmed: 30389451
doi: 10.1016/S2214-109X(18)30451-0
Perin, J. et al. Global, regional, and national causes of under-5 mortality in 2000-19: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet Child Adolesc. Health 6, 106–115 (2022).
pubmed: 34800370
pmcid: 8786667
doi: 10.1016/S2352-4642(21)00311-4
Rokas, A. et al. Developing a theoretical evolutionary framework to solve the mystery of parturition initiation. eLife 9, e58343 (2020).
pubmed: 33380346
pmcid: 7775106
doi: 10.7554/eLife.58343
Romero, R., Dey, S. K. & Fisher, S. J. Preterm labor: one syndrome, many causes. Science 345, 760–765 (2014).
pubmed: 25124429
pmcid: 4191866
doi: 10.1126/science.1251816
Zhang, G. et al. Genetic associations with gestational duration and spontaneous preterm birth. N. Engl. J. Med. 377, 1156–1167 (2017).
pubmed: 28877031
pmcid: 5561422
doi: 10.1056/NEJMoa1612665
Liu, X. et al. Variants in the fetal genome near pro-inflammatory cytokine genes on 2q13 associate with gestational duration. Nat. Commun. 10, 3927 (2019).
pubmed: 31477735
pmcid: 6718389
doi: 10.1038/s41467-019-11881-8
Bacelis, J. et al. Uterine distention as a factor in birth timing: retrospective nationwide cohort study in Sweden. BMJ Open 8, e022929 (2018).
pubmed: 30385442
pmcid: 6252709
doi: 10.1136/bmjopen-2018-022929
Goldenberg, R. L. et al. The preterm prediction study: risk factors in twin gestations. National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Am. J. Obstet. Gynecol. 175, 1047–1053 (1996).
pubmed: 8885774
doi: 10.1016/S0002-9378(96)80051-2
Warrington, N. M. et al. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat. Genet. 51, 804–814 (2019).
pubmed: 31043758
pmcid: 6522365
doi: 10.1038/s41588-019-0403-1
Juliusdottir, T. et al. Distinction between the effects of parental and fetal genomes on fetal growth. Nat. Genet. 53, 1135–1142 (2021).
pubmed: 34282336
doi: 10.1038/s41588-021-00896-x
Haig, D. Genetic conflicts in human pregnancy. Q. Rev. Biol. 68, 495–532 (1993).
pubmed: 8115596
doi: 10.1086/418300
Jb, W. & Ed, B. The coadaptation of parental and offspring characters. Evol. Int. J. Org. Evol. 52, 299–308 (1998).
doi: 10.2307/2411068
Kraft, P. Curses—winner’s and otherwise—in genetic epidemiology. Epidemiol. Camb. Mass 19, 649–651 (2008). discussion 657–658.
doi: 10.1097/EDE.0b013e318181b865
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).
pubmed: 24830394
pmcid: 4022491
doi: 10.1371/journal.pgen.1004383
Bonder, M. J. et al. Identification of rare and common regulatory variants in pluripotent cells using population-scale transcriptomics. Nat. Genet. 53, 313–321 (2021).
pubmed: 33664507
pmcid: 7944648
doi: 10.1038/s41588-021-00800-7
Mortlock, S. et al. Tissue specific regulation of transcription in endometrium and association with disease. Hum. Reprod. 35, 377–393 (2020).
pubmed: 32103259
pmcid: 7048713
doi: 10.1093/humrep/dez279
GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).
doi: 10.1126/science.aaz1776
Pietzner, M. et al. Mapping the proteo-genomic convergence of human diseases. Science 374, eabj1541 (2021).
pubmed: 34648354
pmcid: 9904207
doi: 10.1126/science.abj1541
Deak, B. H. et al. Uterus-relaxing effects of nociceptin and nocistatin: studies on preterm and term-pregnant human myometrium in vitro. Reprod. Syst. Sex. Disord. 2, 117 (2013).
Klukovits, A. et al. Nociceptin inhibits uterine contractions in term-pregnant rats by signaling through multiple pathways. Biol. Reprod. 83, 36–41 (2010).
pubmed: 20237332
doi: 10.1095/biolreprod.109.082222
Sakabe, N. J. et al. Transcriptome and regulatory maps of decidua-derived stromal cells inform gene discovery in preterm birth. Sci. Adv. 6, eabc8696 (2020).
pubmed: 33268355
pmcid: 7710387
doi: 10.1126/sciadv.abc8696
Pique-Regi, R. et al. A single-cell atlas of the myometrium in human parturition. JCI Insight 7, e153921 (2022).
pubmed: 35260533
pmcid: 8983148
doi: 10.1172/jci.insight.153921
LaBella, A. L. et al. Accounting for diverse evolutionary forces reveals mosaic patterns of selection on human preterm birth loci. Nat. Commun. 11, 3731 (2020).
pubmed: 32709900
pmcid: 7382462
doi: 10.1038/s41467-020-17258-6
Sinnott-Armstrong, N. et al. A regulatory variant at 3q21.1 confers an increased pleiotropic risk for hyperglycemia and altered bone mineral density. Cell Metab. 33, 615–628.e13 (2021).
pubmed: 33513366
pmcid: 7928941
doi: 10.1016/j.cmet.2021.01.001
Privé, F., Arbel, J. & Vilhjálmsson, B. J. LDpred2: better, faster, stronger. Bioinformatics 36, 5424–5431 (2020).
pmcid: 8016455
doi: 10.1093/bioinformatics/btaa1029
Laisk, T. et al. The genetic architecture of sporadic and multiple consecutive miscarriage. Nat. Commun. 11, 5980 (2020).
pubmed: 33239672
pmcid: 7689465
doi: 10.1038/s41467-020-19742-5
O’Connor, L. J. & Price, A. L. Distinguishing genetic correlation from causation across 52 diseases and complex traits. Nat. Genet. 50, 1728–1734 (2018).
pubmed: 30374074
pmcid: 6684375
doi: 10.1038/s41588-018-0255-0
Ruth, K. S. et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat. Med. 26, 252–258 (2020).
pubmed: 32042192
pmcid: 7025895
doi: 10.1038/s41591-020-0751-5
Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 9, 224 (2018).
pubmed: 29335400
pmcid: 5768719
doi: 10.1038/s41467-017-02317-2
Chen, J. et al. Dissecting maternal and fetal genetic effects underlying the associations between maternal phenotypes, birth outcomes, and adult phenotypes: a mendelian-randomization and haplotype-based genetic score analysis in 10,734 mother-infant pairs. PLoS Med. 17, e1003305 (2020).
pubmed: 32841251
pmcid: 7447062
doi: 10.1371/journal.pmed.1003305
Romero, R. et al. The preterm parturition syndrome. BJOG 113, 17–42 (2006).
pubmed: 17206962
pmcid: 7062298
doi: 10.1111/j.1471-0528.2006.01120.x
Eidem, H. R., Ackerman, W. E., McGary, K. L., Abbot, P. & Rokas, A. Gestational tissue transcriptomics in term and preterm human pregnancies: a systematic review and meta-analysis. BMC Med. Genom. 8, 27 (2015).
doi: 10.1186/s12920-015-0099-8
Karn, M. N. & Penrose, L. S. Birth weight and gestation time in relation to maternal age, parity and infant survival. Ann. Eugen. 16, 147–164 (1951).
pubmed: 14885877
doi: 10.1111/j.1469-1809.1951.tb02469.x
Wojcik, G. L. et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature 570, 514–518 (2019).
pubmed: 31217584
pmcid: 6785182
doi: 10.1038/s41586-019-1310-4
Magnus, P. et al. Cohort profile: the norwegian mother and child cohort study (MoBa). Int. J. Epidemiol. 35, 1146–1150 (2006).
pubmed: 16926217
doi: 10.1093/ije/dyl170
Brumpton, B. M. et al. The HUNT study: A population-based cohort for genetic research. Cell Genom. 2, 100193 (2022).
pubmed: 36777998
pmcid: 9903730
doi: 10.1016/j.xgen.2022.100193
Hansen, T. F. et al. DBDS Genomic Cohort, a prospective and comprehensive resource for integrative and temporal analysis of genetic, environmental and lifestyle factors affecting health of blood donors. BMJ Open 9, e028401 (2019).
pubmed: 31182452
pmcid: 6561431
doi: 10.1136/bmjopen-2018-028401
Leitsalu, L. et al. Cohort Profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int. J. Epidemiol. 44, 1137–1147 (2015).
pubmed: 24518929
doi: 10.1093/ije/dyt268
Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).
1000 Genomes Project Consortium. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
doi: 10.1038/nature15393
McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).
pubmed: 27548312
pmcid: 5388176
doi: 10.1038/ng.3643
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382
pmcid: 2922887
doi: 10.1093/bioinformatics/btq340
Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).
pubmed: 22426310
pmcid: 3593158
doi: 10.1038/ng.2213
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
pubmed: 21167468
pmcid: 3014363
doi: 10.1016/j.ajhg.2010.11.011
Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 559, 628–634 (2021).
doi: 10.1038/s41586-021-04103-z
Mountjoy, E. et al. An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci. Nat. Genet. 53, 1527–1533 (2021).
pubmed: 34711957
pmcid: 7611956
doi: 10.1038/s41588-021-00945-5
Wallace, C. Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses. PLoS Genet. 16, e1008720 (2020).
pubmed: 32310995
pmcid: 7192519
doi: 10.1371/journal.pgen.1008720
Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
pubmed: 25613900
doi: 10.1126/science.1260419
Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).
pubmed: 26414678
pmcid: 4626285
doi: 10.1038/ng.3404
Gazal, S. et al. Linkage disequilibrium–dependent architecture of human complex traits shows action of negative selection. Nat. Genet. 49, 1421–1427 (2017).
pubmed: 28892061
pmcid: 6133304
doi: 10.1038/ng.3954
Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).
pubmed: 29632380
pmcid: 5896795
doi: 10.1038/s41588-018-0081-4
Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).
pubmed: 26414676
pmcid: 4797329
doi: 10.1038/ng.3406
Kong, A. et al. Detection of sharing by descent, long-range phasing and haplotype imputation. Nat. Genet. 40, 1068–1075 (2008).
pubmed: 19165921
pmcid: 4540081
doi: 10.1038/ng.216
Kong, A. et al. Parental origin of sequence variants associated with complex diseases. Nature 462, 868–874 (2009).
pubmed: 20016592
pmcid: 3746295
doi: 10.1038/nature08625
O’Connell, J. et al. A general approach for haplotype phasing across the full spectrum of relatedness. PLoS Genet. 10, e1004234 (2014).
pubmed: 24743097
pmcid: 3990520
doi: 10.1371/journal.pgen.1004234
Loh, P.-R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 48, 1443–1448 (2016).
pubmed: 27694958
pmcid: 5096458
doi: 10.1038/ng.3679
Ruth, K. S. et al. Genetic insights into biological mechanisms governing human ovarian ageing. Nature 596, 393–397 (2021).
pubmed: 34349265
pmcid: 7611832
doi: 10.1038/s41586-021-03779-7
Sinnott-Armstrong, N., Naqvi, S., Rivas, M. & Pritchard, J. K. GWAS of three molecular traits highlights core genes and pathways alongside a highly polygenic background. eLife 10, e58615 (2021).
pubmed: 33587031
pmcid: 7884075
doi: 10.7554/eLife.58615
Day, F. et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genet. 14, e1007813 (2018).
pubmed: 30566500
pmcid: 6300389
doi: 10.1371/journal.pgen.1007813
Steinthorsdottir, V. et al. Genetic predisposition to hypertension is associated with preeclampsia in european and central asian women. Nat. Commun. 11, 5976 (2020).
pubmed: 33239696
pmcid: 7688949
doi: 10.1038/s41467-020-19733-6
Berisa, T. & Pickrell, J. K. Approximately independent linkage disequilibrium blocks in human populations. Bioinformatics 32, 283–285 (2016).
pubmed: 26395773
doi: 10.1093/bioinformatics/btv546
McLaren, W. et al. The ensembl variant effect predictor. Genome Biol. 17, 122 (2016).
pubmed: 27268795
pmcid: 4893825
doi: 10.1186/s13059-016-0974-4
Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 32, D493–D496 (2004).
pubmed: 14681465
pmcid: 308837
doi: 10.1093/nar/gkh103
Quinlan, A. R. BEDTools: The Swiss-Army tool for genome feature analysis. Curr. Protoc. Bioinforma. 47, 11.12.1–34 (2014).
doi: 10.1002/0471250953.bi1112s47
Mölder, F. et al. Sustainable data analysis with Snakemake. F1000Research 10, 33 (2021).
pubmed: 34035898
pmcid: 8114187
doi: 10.12688/f1000research.29032.2