Cloning and Functional Characterization of 2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase (LiMCT) Gene in Oriental Lily (Lilium 'Sorbonne').
Floral scent
LiMCT
Lilium
Methylerythritol pathway
Monoterpenes biosynthesis
Journal
Molecular biotechnology
ISSN: 1559-0305
Titre abrégé: Mol Biotechnol
Pays: Switzerland
ID NLM: 9423533
Informations de publication
Date de publication:
04 Apr 2023
04 Apr 2023
Historique:
received:
04
02
2023
accepted:
21
03
2023
entrez:
4
4
2023
pubmed:
5
4
2023
medline:
5
4
2023
Statut:
aheadofprint
Résumé
2-C-methyl-D-erythritol-phosphate cytidylyltransferase (MCT) is a key enzyme in the MEP pathway of monoterpene synthesis, catalyzing the generation of 4- (5'-pyrophosphate cytidine)-2-C-methyl-D-erythritol from 2-C-methyl-D-erythritol-4-phosphate. We used homologous cloning strategy to clone gene, LiMCT, in the MEP pathway that may be involved in the regulation of floral fragrance synthesis in the Lilium oriental hybrid 'Sorbonne.' The full-length ORF sequence was 837 bp, encoding 278 amino acids. Bioinformatics analysis showed that the relative molecular weight of LiMCT protein is 68.56 kD and the isoelectric point (pI) is 5.12. The expression pattern of LiMCT gene was found to be consistent with the accumulation sites and emission patterns of floral fragrance monoterpenes in transcriptome data (unpublished). Subcellular localization indicated that the LiMCT protein is located in chloroplasts, which is consistent with the location of MEP pathway genes functioning in plastids to produce isoprene precursors. Overexpression of LiMCT in Arabidopsis thaliana affected the expression levels of MEP and MVA pathway genes, suggesting that overexpression of the LiMCT in A. thaliana affected the metabolic flow of C5 precursors of two different terpene synthesis pathways. The expression of the monoterpene synthase AtTPS14 was elevated nearly fourfold in transgenic A. thaliana compared with the control, and the levels of carotenoids and chlorophylls, the end products of the MEP pathway, were significantly increased in the leaves at full bloom, indicating that LiMCT plays an important role in regulating monoterpene synthesis and in the synthesis of other isoprene-like precursors in transgenic A. thaliana flowers. However, the specific mechanism of LiMCT in promoting the accumulation of isoprene products of the MEP pathway and the biosynthesis of floral monoterpene volatile components needs further investigation.
Identifiants
pubmed: 37014586
doi: 10.1007/s12033-023-00729-8
pii: 10.1007/s12033-023-00729-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Dixon, R. A., & Strack, D. (2003). Phytochemistry meets genome analysis, and beyond. Phytochemistry, 62, 815–816.
pubmed: 12590109
doi: 10.1016/S0031-9422(02)00712-4
Mostafa, S., Wang, Y., Zeng, W., & Jin, B. (2022). Floral scents and fruit aromas: Functions, compositions, biosynthesis, and regulation. Frontiers in Plant Science, 13, 860157.
pubmed: 35360336
pmcid: 8961363
doi: 10.3389/fpls.2022.860157
Muhlemann, J. K., Klempien, A., & Dudareva, N. (2014). Floral volatiles: From biosynthesis to function. Plant, Cell and Environment, 37, 1936–1949.
pubmed: 24588567
doi: 10.1111/pce.12314
Sommano, S. R., Chittasupho, C., Ruksiriwanich, W., & Jantrawut, P. (2020). The cannabis terpenes. Molecules, 25(24), 5792.
pubmed: 33302574
pmcid: 7763918
doi: 10.3390/molecules25245792
Cunningham, F. X., Jr., Lafond, T. P., & Gantt, E. (2000). Evidence of a role for LytB in the nonmevalonate pathway of isoprenoid biosynthesis. Journal of Bacteriology, 182, 5841–5848.
pubmed: 11004185
pmcid: 94708
doi: 10.1128/JB.182.20.5841-5848.2000
Dudareva, N., Martin, D., Kish, C. M., Kolosova, N., Gorenstein, N., Faldt, J., Miller, B., & Bohlmann, J. (2003). (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: Function and expression of three terpene synthase genes of a new terpene synthase subfamily. The Plant Cell, 15, 1227–1241.
pubmed: 12724546
pmcid: 153728
doi: 10.1105/tpc.011015
Nagegowda, D. A. (2010). Plant volatile terpenoid metabolism: Biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Letters, 584, 2965–2973.
pubmed: 20553718
doi: 10.1016/j.febslet.2010.05.045
Dudareva, N., Andersson, S., Orlova, I., Gatto, N., Reichelt, M., Rhodes, D., Boland, W., & Gershenzon, J. (2005). The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proceedings of the National academy of Sciences of the United States of America, 102, 933–938.
pubmed: 15630092
pmcid: 545543
doi: 10.1073/pnas.0407360102
Xue, L., He, Z., Bi, X., Xu, W., Wei, T., Wu, S., & Hu, S. (2019). Transcriptomic profiling reveals MEP pathway contributing to ginsenoside biosynthesis in Panax ginseng. BMC Genomics, 20, 383.
pubmed: 31101014
pmcid: 6524269
doi: 10.1186/s12864-019-5718-x
Kim, S. M., Kuzuyama, T., Chang, Y. J., Kwon, H. J., & Kim, S. U. (2006). Cloning and functional characterization of 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase (GbMECT) gene from Ginkgo biloba. Phytochemistry, 67, 1435–1441.
pubmed: 16828818
doi: 10.1016/j.phytochem.2006.05.034
Hsieh, M. H., Chang, C. Y., Hsu, S. J., & Chen, J. J. (2008). Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of mitochondrial genes in ispD and ispE albino mutants in Arabidopsis. Plant Molecular Biology, 66, 663–673.
pubmed: 18236010
doi: 10.1007/s11103-008-9297-5
Soderlund, C., Descour, A., Kudrna, D., Bomhoff, M., Boyd, L., Currie, J., Angelova, A., Collura, K., Wissotski, M., Ashley, E., Morrow, D., Fernandes, J., Walbot, V., & Yu, Y. (2009). Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs. PLoS Genetics, 5, e1000740.
pubmed: 19936069
pmcid: 2774520
doi: 10.1371/journal.pgen.1000740
Cairney, J., Zheng, L., Cowels, A., Hsiao, J., Zismann, V., Liu, J., Ouyang, S., Thibaud-Nissen, F., Hamilton, J., Childs, K., Pullman, G. S., Zhang, Y., Oh, T., & Buell, C. R. (2006). Expressed sequence tags from loblolly pine embryos reveal similarities with angiosperm embryogenesis. Plant Molecular Biology, 62, 485–501.
pubmed: 17001497
doi: 10.1007/s11103-006-9035-9
Rohdich, F., Wungsintaweekul, J., Fellermeier, M., Sagner, S., Herz, S., Kis, K., Eisenreich, W., Bacher, A., & Zenk, M. H. (1999). Cytidine 5′-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C-methylerythritol. Proceedings of the National academy of Sciences of the United States of America, 96, 11758–11763.
pubmed: 10518523
pmcid: 18359
doi: 10.1073/pnas.96.21.11758
Rohdich, F., Wungsintaweekul, J., Eisenreich, W., Richter, G., Schuhr, C. A., Hecht, S., Zenk, M. H., & Bacher, A. (2000). Biosynthesis of terpenoids: 4-diphosphocytidyl-2C-methyl-D-erythritol synthase of Arabidopsis thaliana. Proceedings of the National academy of Sciences of the United States of America, 97, 6451–6456.
pubmed: 10841550
pmcid: 18623
doi: 10.1073/pnas.97.12.6451
Lawrence, S. D., Cline, K., & Moore, G. A. (1997). Chromoplast development in ripening tomato fruit: Identification of cDNAs for chromoplast-targeted proteins and characterization of a cDNA encoding a plastid-localized low-molecular-weight heat shock protein. Plant Molecular Biology, 33, 483–492.
pubmed: 9049268
doi: 10.1023/A:1005785321165
Gao, P., Yang, Y., Xiao, C., Liu, Y., Gan, M., Guan, Y., Hao, X., Meng, J., Zhou, S., Chen, X., & Cui, J. (2012). Identification and validation of a novel lead compound targeting 4-diphosphocytidyl-2-C-methylerythritol synthetase (IspD) of mycobacteria. European Journal of Pharmacology, 694, 45–52.
pubmed: 22975264
doi: 10.1016/j.ejphar.2012.08.012
Antoniadi, I., Skalicky, V., Sun, G., Ma, W., Galbraith, D. W., Novak, O., & Ljung, K. (2022). Fluorescence activated cell sorting—A selective tool for plant cell isolation and analysis. Cytometry Part A, 101, 725–736.
doi: 10.1002/cyto.a.24461
Nolan, T., Hands, R. E., & Bustin, S. A. (2006). Quantification of mRNA using real-time RT-PCR. Nature Protocols, 1, 1559–1582.
pubmed: 17406449
doi: 10.1038/nprot.2006.236
Abbas, F., Ke, Y., Zhou, Y., Waseem, M., Yu, Y., Ashraf, U., Li, X., Wang, C., Yue, Y., Yu, R., & Fan, Y. (2020). Cloning, functional characterization and expression analysis of LoTPS5 from Lilium ‘Siberia.’ Gene, 756, 144921.
pubmed: 32593719
doi: 10.1016/j.gene.2020.144921
Zhang, X., Henriques, R., Lin, S. S., Niu, Q. W., & Chua, N. H. (2006). Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols, 1, 641–646.
pubmed: 17406292
doi: 10.1038/nprot.2006.97
Ghedira, R., De Buck, S., Nolf, J., & Depicker, A. (2013). The efficiency of Arabidopsis thaliana floral dip transformation is determined not only by the Agrobacterium strain used but also by the physiology and the ecotype of the dipped plant. Molecular Plant–Microbe Interactions, 26, 823–832.
pubmed: 23581821
doi: 10.1094/MPMI-11-12-0267-R
Hu, Z., Tang, B., Wu, Q., Zheng, J., Leng, P., & Zhang, K. (2017). Transcriptome sequencing analysis reveals a difference in monoterpene biosynthesis between scented Lilium ‘Siberia’ and unscented Lilium ‘Novano.’ Frontiers in Plant Science, 8, 1351.
pubmed: 28824685
pmcid: 5543080
doi: 10.3389/fpls.2017.01351
Xi, W., Liu, C., Hou, X., & Yu, H. (2010). MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. The Plant Cell, 22, 1733–1748.
pubmed: 20551347
pmcid: 2910974
doi: 10.1105/tpc.109.073072
Singh, S., Pal, S., Shanker, K., Chanotiya, C. S., Gupta, M. M., Dwivedi, U. N., & Shasany, A. K. (2014). Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis. Physiologia Plantarum, 152, 617–633.
pubmed: 24749735
doi: 10.1111/ppl.12213
Richard, S. B., Lillo, A. M., Tetzlaff, C. N., Bowman, M. E., Noel, J. P., & Cane, D. E. (2004). Kinetic analysis of Escherichia coli 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase, wild type and mutants, reveals roles of active site amino acids. Biochemistry, 43, 12189–12197.
pubmed: 15379557
doi: 10.1021/bi0487241
Lichtenthaler, H. K., Schwender, J., Disch, A., & Rohmer, M. (1997). Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Letters, 400, 271–274.
pubmed: 9009212
doi: 10.1016/S0014-5793(96)01404-4
Guirimand, G., Guihur, A., Perello, C., Phillips, M., Mahroug, S., Oudin, A., Duge de Bernonville, T., Besseau, S., Lanoue, A., Giglioli-Guivarc’h, N., Papon, N., St-Pierre, B., Rodriguez-Concepcion, M., Burlat, V., & Courdavault, V. (2020). Cellular and subcellular compartmentation of the 2C-methyl-D-erythritol 4-phosphate pathway in the Madagascar periwinkle. Plants (Basel), 9(4), 462.
pubmed: 32272573
doi: 10.3390/plants9040462
Vranova, E., Kopcsayova, D., Kosuth, J., & Colinas, M. (2019). Mutant-based model of two independent pathways for carotenoid-mediated chloroplast biogenesis in Arabidopsis embryos. Frontiers in Plant Science, 10, 1034.
pubmed: 31507624
pmcid: 6718698
doi: 10.3389/fpls.2019.01034
Jarvis, P. (2019). Chloroplast research methods: Probing the targeting, localization and interactions of chloroplast proteins. Journal of Visualized Experiments. https://doi.org/10.3791/59935
doi: 10.3791/59935
pubmed: 31840659
Lois, L. M., Rodriguez-Concepcion, M., Gallego, F., Campos, N., & Boronat, A. (2000). Carotenoid biosynthesis during tomato fruit development: Regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. The Plant Journal, 22, 503–513.
pubmed: 10886770
doi: 10.1046/j.1365-313x.2000.00764.x
Farre-Armengol, G., Filella, I., Llusia, J., & Penuelas, J. (2017). beta-Ocimene, a key floral and foliar volatile involved in multiple interactions between plants and other organisms. Molecules. https://doi.org/10.3390/molecules22071148
doi: 10.3390/molecules22071148
pubmed: 28703755
pmcid: 6152128
Fenske, M. P., Hewett Hazelton, K. D., Hempton, A. K., Shim, J. S., Yamamoto, B. M., Riffell, J. A., & Imaizumi, T. (2015). Circadian clock gene LATE ELONGATED HYPOCOTYL directly regulates the timing of floral scent emission in Petunia. Proceedings of the National Academy of Sciences of the United States of America, 112, 9775–9780.
pubmed: 26124104
pmcid: 4534231
doi: 10.1073/pnas.1422875112
Sheng, L., Zang, S., Wang, J., Wei, T., Xu, Y., & Feng, L. (2021). Overexpression of a Rosa rugosa Thunb. NUDX gene enhances biosynthesis of scent volatiles in petunia. PeerJ, 9, e11098.
pubmed: 33859875
pmcid: 8020868
doi: 10.7717/peerj.11098
Feng, L., Chen, C., Li, T., Wang, M., Tao, J., Zhao, D., & Sheng, L. (2014). Flowery odor formation revealed by differential expression of monoterpene biosynthetic genes and monoterpene accumulation in rose (Rosa rugosa Thunb.). Plant Physiology and Biochemistry, 75, 80–88.
pubmed: 24384414
doi: 10.1016/j.plaphy.2013.12.006
Zhang, T., Sun, M., Guo, Y., Shi, X., Yang, Y., Chen, J., Zheng, T., Han, Y., Bao, F., & Ahmad, S. (2018). Overexpression of LiDXS and LiDXR from lily (Lilium ‘Siberia’) enhances the terpenoid content in tobacco flowers. Frontiers in Plant Science, 9, 909.
pubmed: 30038631
pmcid: 6046550
doi: 10.3389/fpls.2018.00909
Jin, Y., Liu, Z., Li, Y., Liu, W., Tao, Y., & Wang, G. (2016). A structural and functional study on the 2-C-methyl-d-erythritol-4-phosphate cytidyltransferase (IspD) from Bacillus subtilis. Science and Reports, 6, 36379.
doi: 10.1038/srep36379
Imlay, L. S., Armstrong, C. M., Masters, M. C., Li, T., Price, K. E., Edwards, R. L., Mann, K. M., Li, L. X., Stallings, C. L., Berry, N. G., O’Neill, P. M., & Odom, A. R. (2015). Plasmodium IspD (2-C-methyl-D-erythritol 4-phosphate cytidyltransferase), an essential and druggable antimalarial target. ACS Infectious Diseases, 1, 157–167.
pubmed: 26783558
pmcid: 4714788
doi: 10.1021/id500047s
Ghavami, M., Merino, E. F., Yao, Z. K., Elahi, R., Simpson, M. E., Fernandez-Murga, M. L., Butler, J. H., Casasanta, M. A., Krai, P. M., Totrov, M. M., Slade, D. J., Carlier, P. R., & Cassera, M. B. (2018). Biological studies and target engagement of the 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase (IspD)-targeting antimalarial agent (1 R,3 S)-MMV008138 and analogs. ACS Infectious Diseases, 4, 549–559.
pubmed: 29072835
doi: 10.1021/acsinfecdis.7b00159
Lan, X. Z. (2013). Molecular cloning and characterization of the gene encoding 2-C-methyl-D-erythritol 4-phosphate cytidyltransferase from hairy roots of Rauvolfia verticillata. Biologia, 68, 91–98.
doi: 10.2478/s11756-012-0140-8
Banerjee, A., Wu, Y., Banerjee, R., Li, Y., Yan, H. G., & Sharkey, T. D. (2013). Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway. Journal of Biological Chemistry, 288, 16926–16936.
pubmed: 23612965
pmcid: 3675625
doi: 10.1074/jbc.M113.464636
Morrone, D., Lowry, L., Determan, M. K., Hershey, D. M., Xu, M. M., & Peters, R. J. (2010). Increasing diterpene yield with a modular metabolic engineering system in E. coli: Comparison of MEV and MEP isoprenoid precursor pathway engineering. Applied Microbiology and Biotechnology, 85, 1893–1906.
pubmed: 19777230
doi: 10.1007/s00253-009-2219-x
Ali, M., Alshehri, D., Alkhaibari, A. M., Elhalem, N. A., & Darwish, D. B. E. (2022). Cloning and characterization of 1,8-cineole synthase (SgCINS) gene from the leaves of Salvia guaranitica plant. Frontiers in Plant Science, 13, 869432.
pubmed: 35498676
pmcid: 9051517
doi: 10.3389/fpls.2022.869432