Mechanism of germination inhibition of Clostridioides difficile spores by an aniline substituted cholate derivative (CaPA).
Journal
The Journal of antibiotics
ISSN: 1881-1469
Titre abrégé: J Antibiot (Tokyo)
Pays: England
ID NLM: 0151115
Informations de publication
Date de publication:
06 2023
06 2023
Historique:
received:
15
02
2023
accepted:
07
03
2023
revised:
28
02
2023
medline:
30
5
2023
pubmed:
5
4
2023
entrez:
4
4
2023
Statut:
ppublish
Résumé
Clostridioides difficile infection (CDI) is the major identifiable cause of antibiotic-associated diarrhea and has been declared an urgent threat by the CDC. C. difficile forms dormant and resistant spores that serve as infectious vehicles for CDI. To cause disease, C. difficile spores recognize taurocholate and glycine to trigger the germination process. In contrast to other sporulating bacteria, C. difficile spores are postulated to use a protease complex, CspABC, to recognize its germinants. Since spore germination is required for infection, we have developed anti-germination approaches for CDI prophylaxis. Previously, the bile salt analog CaPA (an aniline-substituted cholic acid) was shown to block spore germination and protect rodents from CDI caused by multiple C. difficile strains and isolates. In this study, we found that CaPA is an alternative substrate inhibitor of C. difficile spore germination. By competing with taurocholate for binding, CaPA delays C. difficile spore germination and reduces spore viability, thus diminishing the number of outgrowing vegetative bacteria. We hypothesize that the reduction of toxin-producing bacterial burden explains CaPA's protective activity against murine CDI. Previous data combined with our results suggests that CaPA binds tightly to C. difficile spores in a CspC-dependent manner and irreversibly traps spores in an alternative, time-delayed, and low yield germination pathway. Our results are also consistent with kinetic data suggesting the existence of at least two distinct bile salt binding sites in C. difficile spores.
Identifiants
pubmed: 37016015
doi: 10.1038/s41429-023-00612-3
pii: 10.1038/s41429-023-00612-3
pmc: PMC10406169
mid: NIHMS1913482
doi:
Substances chimiques
Cholates
0
Taurocholic Acid
5E090O0G3Z
Bile Acids and Salts
0
Bacterial Proteins
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
335-345Subventions
Organisme : NIGMS NIH HHS
ID : P20 GM103440
Pays : United States
Organisme : NCRR NIH HHS
ID : P20 RR016464
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI109139
Pays : United States
Informations de copyright
© 2023. The Author(s), under exclusive licence to the Japan Antibiotics Research Association.
Références
J Bacteriol. 2017 Oct 17;199(22):
pubmed: 28874406
J Infect Dis. 2013 May 15;207(10):1498-504
pubmed: 23420906
J Clin Microbiol. 1983 Oct;18(4):1017-9
pubmed: 6630458
Curr Issues Mol Biol. 2010;12(3):147-58
pubmed: 20472940
J Bacteriol. 2011 Aug;193(16):4192-8
pubmed: 21685276
Appl Environ Microbiol. 2012 Jul;78(13):4683-90
pubmed: 22522680
J Bacteriol. 2010 Jan;192(2):418-25
pubmed: 19915025
PLoS One. 2013 Sep 09;8(9):e73653
pubmed: 24040011
J Bacteriol. 2011 Jun;193(11):2776-83
pubmed: 21478359
BMC Infect Dis. 2016 Apr 22;16:177
pubmed: 27102582
Antimicrob Agents Chemother. 2022 Jan 18;66(1):e0143521
pubmed: 34780262
PLoS Pathog. 2019 Apr 3;15(4):e1007681
pubmed: 30943268
Infect Immun. 2020 May 20;88(6):
pubmed: 32205405
Analyst. 1999 Nov;124(11):1599-604
pubmed: 10746319
J Bacteriol. 2010 Oct;192(19):4983-90
pubmed: 20675492
Antimicrob Agents Chemother. 2018 Sep 24;62(10):
pubmed: 30012758
PLoS Genet. 2019 Jul 5;15(7):e1008224
pubmed: 31276487
Biochem Pharmacol. 2021 Jan;183:114314
pubmed: 33152344
Bioorg Med Chem. 2021 Dec 15;52:116503
pubmed: 34837818
J Bacteriol. 2009 Feb;191(3):1115-7
pubmed: 19060152
Res Microbiol. 2010 Nov;161(9):730-4
pubmed: 20863888
Nat Genet. 2006 Jul;38(7):779-86
pubmed: 16804543
Cell Mol Life Sci. 2002 Mar;59(3):403-9
pubmed: 11964118
J Bacteriol. 2008 Apr;190(7):2505-12
pubmed: 18245298
Res Microbiol. 2010 Dec;161(10):830-7
pubmed: 20870021
J Med Chem. 2017 Apr 27;60(8):3451-3471
pubmed: 28402634
Curr Opin Microbiol. 2003 Dec;6(6):550-6
pubmed: 14662349
J Med Chem. 2018 Aug 09;61(15):6759-6778
pubmed: 30004695
Appl Environ Microbiol. 1985 Jun;49(6):1356-60
pubmed: 16346801
Curr Microbiol. 2019 Jun;76(6):774-782
pubmed: 30084095
Anaerobe. 2017 Jun;45:86-100
pubmed: 28279860
PLoS One. 2012;7(2):e32381
pubmed: 22384234
J Clin Gastroenterol. 2016 Sep;50(8):624-30
pubmed: 26485102
PLoS One. 2013 Aug 30;8(8):e72620
pubmed: 24023628
PLoS Pathog. 2013 May;9(5):e1003356
pubmed: 23675301
Clin Microbiol Rev. 2015 Jul;28(3):721-41
pubmed: 26085550
Expert Rev Anti Infect Ther. 2007 Oct;5(5):783-92
pubmed: 17914913
J Bacteriol. 2011 Jan;193(1):274-82
pubmed: 20971909
RSC Chem Biol. 2021 Jan 11;2(2):645-655
pubmed: 34458806
PLoS One. 2010 Jan 15;5(1):e8740
pubmed: 20090901
J Bacteriol. 2015 Dec 14;198(5):777-86
pubmed: 26668265
J Antimicrob Chemother. 2015;70(6):1757-62
pubmed: 25652749
Arch Intern Med. 2001 Feb 26;161(4):525-33
pubmed: 11252111
J Bacteriol. 2010 Aug;192(16):4215-22
pubmed: 20562307
Methods Mol Biol. 2016;1476:35-52
pubmed: 27507332
J Biol Chem. 2007 Apr 20;282(16):12112-8
pubmed: 17296608
Emerg Microbes Infect. 2013 Sep;2(9):e62
pubmed: 26038491