Spatial cumulant models enable spatially informed treatment strategies and analysis of local interactions in cancer systems.
Cancer eco-evolution
Individual-based models
Mathematical oncology
Spatial moments
Spatio-temporal point processes
Journal
Journal of mathematical biology
ISSN: 1432-1416
Titre abrégé: J Math Biol
Pays: Germany
ID NLM: 7502105
Informations de publication
Date de publication:
05 04 2023
05 04 2023
Historique:
received:
15
06
2022
accepted:
09
03
2023
revised:
13
01
2023
medline:
7
4
2023
entrez:
5
4
2023
pubmed:
6
4
2023
Statut:
epublish
Résumé
Theoretical and applied cancer studies that use individual-based models (IBMs) have been limited by the lack of a mathematical formulation that enables rigorous analysis of these models. However, spatial cumulant models (SCMs), which have arisen from theoretical ecology, describe population dynamics generated by a specific family of IBMs, namely spatio-temporal point processes (STPPs). SCMs are spatially resolved population models formulated by a system of differential equations that approximate the dynamics of two STPP-generated summary statistics: first-order spatial cumulants (densities), and second-order spatial cumulants (spatial covariances). We exemplify how SCMs can be used in mathematical oncology by modelling theoretical cancer cell populations comprising interacting growth factor-producing and non-producing cells. To formulate model equations, we use computational tools that enable the generation of STPPs, SCMs and mean-field population models (MFPMs) from user-defined model descriptions (Cornell et al. Nat Commun 10:4716, 2019). To calculate and compare STPP, SCM and MFPM-generated summary statistics, we develop an application-agnostic computational pipeline. Our results demonstrate that SCMs can capture STPP-generated population density dynamics, even when MFPMs fail to do so. From both MFPM and SCM equations, we derive treatment-induced death rates required to achieve non-growing cell populations. When testing these treatment strategies in STPP-generated cell populations, our results demonstrate that SCM-informed strategies outperform MFPM-informed strategies in terms of inhibiting population growths. We thus demonstrate that SCMs provide a new framework in which to study cell-cell interactions, and can be used to describe and perturb STPP-generated cell population dynamics. We, therefore, argue that SCMs can be used to increase IBMs' applicability in cancer research.
Identifiants
pubmed: 37017776
doi: 10.1007/s00285-023-01903-x
pii: 10.1007/s00285-023-01903-x
pmc: PMC10076412
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
68Subventions
Organisme : NCI NIH HHS
ID : R37 CA244613
Pays : United States
Informations de copyright
© 2023. The Author(s).
Références
Sci Adv. 2022 Jul;8(26):eabm7212
pubmed: 35776787
Cancers (Basel). 2020 May 14;12(5):
pubmed: 32422889
Nat Ecol Evol. 2019 Mar;3(3):450-456
pubmed: 30778184
Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12781-6
pubmed: 16912114
JCO Clin Cancer Inform. 2019 Feb;3:1-11
pubmed: 30742485
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 1):041905
pubmed: 21230311
Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):1918-1923
pubmed: 30674661
Bull Math Biol. 2018 Nov;80(11):2828-2855
pubmed: 30097916
Phys Biol. 2019 Jun 19;16(4):041005
pubmed: 30991381
Nat Commun. 2019 Oct 17;10(1):4716
pubmed: 31624268
Nat Commun. 2021 Nov 1;12(1):6278
pubmed: 34725363
Bull Math Biol. 2013 Jan;75(1):161-84
pubmed: 23196354
Nat Commun. 2021 Jun 17;12(1):3697
pubmed: 34140482
Cell Physiol Biochem. 2014;34(2):213-43
pubmed: 25034869
Front Physiol. 2019 Feb 14;10:96
pubmed: 30890944
JCO Clin Cancer Inform. 2019 Feb;3:1-13
pubmed: 30715927
J Theor Biol. 2017 Jun 21;423:13-25
pubmed: 28433392
NPJ Syst Biol Appl. 2017 Mar 3;3:5
pubmed: 28649432
Nature. 2015 Sep 10;525(7568):261-4
pubmed: 26308893
Cancer Res. 2020 Feb 1;80(3):613-623
pubmed: 31772037
Nat Rev Cancer. 2006 Dec;6(12):924-35
pubmed: 17109012
Ecol Evol. 2020 Jul 29;10(16):8538-8553
pubmed: 32884638
Nat Rev Genet. 2017 Apr;18(4):213-229
pubmed: 28190876
Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):1833-8
pubmed: 25624490
Bull Math Biol. 2016 Nov;78(11):2277-2301
pubmed: 27761698
Int J Mol Sci. 2018 Oct 29;19(11):
pubmed: 30380596
Nat Commun. 2021 Jan 12;12(1):316
pubmed: 33436546
J R Soc Interface. 2020 Oct;17(171):20200655
pubmed: 33109018
Wiley Interdiscip Rev Syst Biol Med. 2020 Jan;12(1):e1461
pubmed: 31313504
Nat Commun. 2017 Nov 28;8(1):1816
pubmed: 29180633
Evol Appl. 2020 Mar 18;13(7):1635-1650
pubmed: 32821275
Math Biosci Eng. 2009 Jul;6(3):521-46
pubmed: 19566124
PLoS Comput Biol. 2022 Mar 3;18(3):e1009844
pubmed: 35239640
Bull Math Biol. 2015 Apr;77(4):713-34
pubmed: 25549623
Bull Math Biol. 2021 Aug 30;83(10):103
pubmed: 34459993
Bull Math Biol. 2018 Jun;80(6):1615-1629
pubmed: 29644518
Theor Popul Biol. 1997 Dec;52(3):179-97
pubmed: 9466960