Lung adenocarcinoma promotion by air pollutants.
Animals
Mice
Adenocarcinoma of Lung
/ chemically induced
Air Pollutants
/ adverse effects
Air Pollution
/ adverse effects
Cell Transformation, Neoplastic
/ chemically induced
Environmental Exposure
ErbB Receptors
/ genetics
Lung Neoplasms
/ chemically induced
Particulate Matter
/ adverse effects
Particle Size
Cohort Studies
Macrophages, Alveolar
/ drug effects
Alveolar Epithelial Cells
/ drug effects
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
received:
17
06
2022
accepted:
21
02
2023
medline:
7
4
2023
entrez:
5
4
2023
pubmed:
6
4
2023
Statut:
ppublish
Résumé
A complete understanding of how exposure to environmental substances promotes cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to occur in a two-step process: an initiating step that induces mutations in healthy cells, followed by a promoter step that triggers cancer development
Identifiants
pubmed: 37020004
doi: 10.1038/s41586-023-05874-3
pii: 10.1038/s41586-023-05874-3
pmc: PMC7614604
mid: EMS173669
doi:
Substances chimiques
Air Pollutants
0
ErbB Receptors
EC 2.7.10.1
Particulate Matter
0
EGFR protein, human
EC 2.7.10.1
IL1B protein, mouse
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
159-167Subventions
Organisme : Cancer Research UK
ID : CTRNBC-2022/100001
Pays : United Kingdom
Organisme : Cancer Research UK
ID : 25514
Pays : United Kingdom
Organisme : Medical Research Council
ID : CC2041
Pays : United Kingdom
Organisme : Cancer Research UK
ID : CC2041
Pays : United Kingdom
Organisme : Cancer Research UK
ID : 21999
Pays : United Kingdom
Organisme : Cancer Research UK
ID : EDDPJT-NOV22/100042
Pays : United Kingdom
Organisme : Wellcome Trust
ID : CC2041
Pays : United Kingdom
Organisme : Cancer Research UK
ID : 17786
Pays : United Kingdom
Organisme : BLRD VA
ID : I01 BX004495
Pays : United States
Organisme : Medical Research Council
ID : MR/W025051/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/V033077/1
Pays : United Kingdom
Organisme : Cancer Research UK
ID : 29569
Pays : United Kingdom
Organisme : Cancer Research UK
ID : 30025
Pays : United Kingdom
Investigateurs
Jason F Lester
(JF)
Amrita Bajaj
(A)
Apostolos Nakas
(A)
Azmina Sodha-Ramdeen
(A)
Keng Ang
(K)
Mohamad Tufail
(M)
Mohammed Fiyaz Chowdhry
(MF)
Molly Scotland
(M)
Rebecca Boyles
(R)
Sridhar Rathinam
(S)
Claire Wilson
(C)
Domenic Marrone
(D)
Sean Dulloo
(S)
Dean A Fennell
(DA)
Gurdeep Matharu
(G)
Jacqui A Shaw
(JA)
Joan Riley
(J)
Lindsay Primrose
(L)
Ekaterini Boleti
(E)
Heather Cheyne
(H)
Mohammed Khalil
(M)
Shirley Richardson
(S)
Tracey Cruickshank
(T)
Gillian Price
(G)
Keith M Kerr
(KM)
Sarah Benafif
(S)
Kayleigh Gilbert
(K)
Babu Naidu
(B)
Akshay J Patel
(AJ)
Aya Osman
(A)
Christer Lacson
(C)
Gerald Langman
(G)
Helen Shackleford
(H)
Madava Djearaman
(M)
Salma Kadiri
(S)
Gary Middleton
(G)
Angela Leek
(A)
Jack Davies Hodgkinson
(JD)
Nicola Totten
(N)
Angeles Montero
(A)
Elaine Smith
(E)
Eustace Fontaine
(E)
Felice Granato
(F)
Helen Doran
(H)
Juliette Novasio
(J)
Kendadai Rammohan
(K)
Leena Joseph
(L)
Paul Bishop
(P)
Rajesh Shah
(R)
Stuart Moss
(S)
Vijay Joshi
(V)
Philip Crosbie
(P)
Fabio Gomes
(F)
Kate Brown
(K)
Mathew Carter
(M)
Anshuman Chaturvedi
(A)
Lynsey Priest
(L)
Pedro Oliveira
(P)
Colin R Lindsay
(CR)
Fiona H Blackhall
(FH)
Matthew G Krebs
(MG)
Yvonne Summers
(Y)
Alexandra Clipson
(A)
Jonathan Tugwood
(J)
Alastair Kerr
(A)
Dominic G Rothwell
(DG)
Elaine Kilgour
(E)
Caroline Dive
(C)
Hugo J W L Aerts
(HJWL)
Roland F Schwarz
(RF)
Tom L Kaufmann
(TL)
Gareth A Wilson
(GA)
Rachel Rosenthal
(R)
Peter Van Loo
(P)
Nicolai J Birkbak
(NJ)
Zoltan Szallasi
(Z)
Judit Kisistok
(J)
Mateo Sokac
(M)
Roberto Salgado
(R)
Miklos Diossy
(M)
Jonas Demeulemeester
(J)
Abigail Bunkum
(A)
Aengus Stewart
(A)
Alexander M Frankell
(AM)
Angeliki Karamani
(A)
Antonia Toncheva
(A)
Ariana Huebner
(A)
Benny Chain
(B)
Brittany B Campbell
(BB)
Carla Castignani
(C)
Clare Puttick
(C)
Corentin Richard
(C)
Crispin T Hiley
(CT)
David R Pearce
(DR)
Despoina Karagianni
(D)
Dhruva Biswas
(D)
Dina Levi
(D)
Elena Hoxha
(E)
Elizabeth Larose Cadieux
(EL)
Emma Colliver
(E)
Emma Nye
(E)
Felip Gálvez-Cancino
(F)
Foteini Athanasopoulou
(F)
Francisco Gimeno-Valiente
(F)
George Kassiotis
(G)
Georgia Stavrou
(G)
Gerasimos Mastrokalos
(G)
Haoran Zhai
(H)
Helen L Lowe
(HL)
Ignacio Garcia Matos
(IG)
Jacki Goldman
(J)
James L Reading
(JL)
Javier Herrero
(J)
Jayant K Rane
(JK)
Jerome Nicod
(J)
Jie Min Lam
(JM)
John A Hartley
(JA)
Karl S Peggs
(KS)
Katey S S Enfield
(KSS)
Kayalvizhi Selvaraju
(K)
Kerstin Thol
(K)
Kevin W Ng
(KW)
Krijn Dijkstra
(K)
Kristiana Grigoriadis
(K)
Krupa Thakkar
(K)
Leah Ensell
(L)
Mansi Shah
(M)
Marcos Vasquez Duran
(MV)
Maria Litovchenko
(M)
Mariana Werner Sunderland
(MW)
Michelle Dietzen
(M)
Michelle Leung
(M)
Mickael Escudero
(M)
Mihaela Angelova
(M)
Miljana Tanić
(M)
Olga Chervova
(O)
Olivia Lucas
(O)
Othman Al-Sawaf
(O)
Paulina Prymas
(P)
Philip Hobson
(P)
Piotr Pawlik
(P)
Richard Kevin Stone
(RK)
Robert Bentham
(R)
Robert E Hynds
(RE)
Roberto Vendramin
(R)
Sadegh Saghafinia
(S)
Saioa López
(S)
Samuel Gamble
(S)
Seng Kuong Anakin Ung
(SKA)
Sergio A Quezada
(SA)
Sharon Vanloo
(S)
Simone Zaccaria
(S)
Sonya Hessey
(S)
Sophia Ward
(S)
Stefan Boeing
(S)
Stephan Beck
(S)
Supreet Kaur Bola
(SK)
Tamara Denner
(T)
Teresa Marafioti
(T)
Thanos P Mourikis
(TP)
Thomas B K Watkins
(TBK)
Victoria Spanswick
(V)
Vittorio Barbè
(V)
Wei-Ting Lu
(WT)
Wing Kin Liu
(WK)
Yin Wu
(Y)
Yutaka Naito
(Y)
Zoe Ramsden
(Z)
Catarina Veiga
(C)
Gary Royle
(G)
Charles-Antoine Collins-Fekete
(CA)
Francesco Fraioli
(F)
Paul Ashford
(P)
Tristan Clark
(T)
Martin D Forster
(MD)
Siow Ming Lee
(SM)
Elaine Borg
(E)
Mary Falzon
(M)
Dionysis Papadatos-Pastos
(D)
James Wilson
(J)
Tanya Ahmad
(T)
Alexander James Procter
(AJ)
Asia Ahmed
(A)
Magali N Taylor
(MN)
Arjun Nair
(A)
David Lawrence
(D)
Davide Patrini
(D)
Neal Navani
(N)
Ricky M Thakrar
(RM)
Sam M Janes
(SM)
Emilie Martinoni Hoogenboom
(EM)
Fleur Monk
(F)
James W Holding
(JW)
Junaid Choudhary
(J)
Kunal Bhakhri
(K)
Marco Scarci
(M)
Martin Hayward
(M)
Nikolaos Panagiotopoulos
(N)
Pat Gorman
(P)
Reena Khiroya
(R)
Robert C M Stephens
(RCM)
Yien Ning Sophia Wong
(YNS)
Steve Bandula
(S)
Abigail Sharp
(A)
Sean Smith
(S)
Nicole Gower
(N)
Harjot Kaur Dhanda
(HK)
Kitty Chan
(K)
Camilla Pilotti
(C)
Rachel Leslie
(R)
Anca Grapa
(A)
Hanyun Zhang
(H)
Khalid AbdulJabbar
(K)
Xiaoxi Pan
(X)
Yinyin Yuan
(Y)
David Chuter
(D)
Mairead MacKenzie
(M)
Serena Chee
(S)
Aiman Alzetani
(A)
Judith Cave
(J)
Lydia Scarlett
(L)
Jennifer Richards
(J)
Papawadee Ingram
(P)
Silvia Austin
(S)
Eric Lim
(E)
Paulo De Sousa
(P)
Simon Jordan
(S)
Alexandra Rice
(A)
Hilgardt Raubenheimer
(H)
Harshil Bhayani
(H)
Lyn Ambrose
(L)
Anand Devaraj
(A)
Hema Chavan
(H)
Sofina Begum
(S)
Silviu I Buderi
(SI)
Daniel Kaniu
(D)
Mpho Malima
(M)
Sarah Booth
(S)
Andrew G Nicholson
(AG)
Nadia Fernandes
(N)
Pratibha Shah
(P)
Chiara Proli
(C)
Madeleine Hewish
(M)
Sarah Danson
(S)
Michael J Shackcloth
(MJ)
Lily Robinson
(L)
Peter Russell
(P)
Kevin G Blyth
(KG)
Craig Dick
(C)
John Le Quesne
(J)
Alan Kirk
(A)
Mo Asif
(M)
Rocco Bilancia
(R)
Nikos Kostoulas
(N)
Mathew Thomas
(M)
Commentaires et corrections
Type : CommentIn
Type : CommentIn
Type : CommentIn
Type : CommentIn
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Berenblum, I. & Shubik, P. A new, quantitative, approach to the study of the stages of chemical carcinogenesis in the mouse’s skin. Br. J. Cancer 1, 383–391 (1947).
pubmed: 18906316
pmcid: 2007527
doi: 10.1038/bjc.1947.36
Cogliano, V. J. et al. Preventable exposures associated with human cancers. J. Natl Cancer Inst. 103, 1827–1839 (2011).
pubmed: 22158127
pmcid: 3243677
doi: 10.1093/jnci/djr483
Sun, S., Schiller, J. H. & Gazdar, A. F. Lung cancer in never smokers—a different disease. Nat. Rev. Cancer 7, 778–790 (2007).
pubmed: 17882278
doi: 10.1038/nrc2190
Midha, A., Dearden, S. & McCormack, R. EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). Am. J. Cancer Res. 5, 2892–2911 (2015).
pubmed: 26609494
pmcid: 4633915
Carrot-Zhang, J. et al. Genetic ancestry contributes to somatic mutations in lung cancers from admixed Latin American populations. Cancer Discov. 11, 591–598 (2021).
pubmed: 33268447
doi: 10.1158/2159-8290.CD-20-1165
Myers, R. et al. High ambient air pollution exposure among never smokers versus ever smokers with lung cancer. J. Thorac. Oncol. 16, 1858–1858 (2021).
doi: 10.1016/j.jtho.2021.06.015
WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide (World Health Organization, 2021).
Kucab, J. E. et al. A compendium of mutational signatures of environmental agents. Cell 177, 821–836.e16 (2019).
pubmed: 30982602
pmcid: 6506336
doi: 10.1016/j.cell.2019.03.001
Riva, L. et al. The mutational signature profile of known and suspected human carcinogens in mice. Nat. Genet. 52, 1189–1197 (2020).
pubmed: 32989322
pmcid: 7610456
doi: 10.1038/s41588-020-0692-4
Moody, S. et al. Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence. Nat. Genet. 53, 1553–1563 (2021).
pubmed: 34663923
doi: 10.1038/s41588-021-00928-6
Zhang, T. et al. Genomic and evolutionary classification of lung cancer in never smokers. Nat. Genet. 53, 1348–1359 (2021).
pubmed: 34493867
pmcid: 8432745
doi: 10.1038/s41588-021-00920-0
Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).
pubmed: 28445112
doi: 10.1056/NEJMoa1616288
Chen, Y.-J. et al. Proteogenomics of non-smoking lung cancer in East Asia delineates molecular signatures of pathogenesis and progression. Cell 182, 226–244.e17 (2020).
pubmed: 32649875
doi: 10.1016/j.cell.2020.06.012
Frankell, A. M. et al. The evolution of lung cancer and impact of subclonal selection in TRACERx. Nature https://doi.org/10.1038/s41586-023-05783-5 (2023).
Takahashi, H., Ogata, H., Nishigaki, R., Broide, D. H. & Karin, M. Tobacco smoke promotes lung tumorigenesis by triggering IKKβ- and JNK1-dependent inflammation. Cancer Cell 17, 89–97 (2010).
pubmed: 20129250
pmcid: 2818776
doi: 10.1016/j.ccr.2009.12.008
Im, H-B. et al. South Korea. Encyclopaedia Britannica. https://www.britannica.com/place/South-Korea (accessed 9 March 2023).
The Ethnic Group. Executive Yuan. https://www.ey.gov.tw/state/99B2E89521FC31E1/2820610c-e97f-4d33-aa1e-e7b15222e45a (accessed 9 March 2023).
Huang, Y. et al. Air pollution, genetic factors, and the risk of lung cancer: a prospective study in the UK Biobank. Am. J. Respir. Crit. Care Med. 204, 817–825 (2021).
pubmed: 34252012
doi: 10.1164/rccm.202011-4063OC
McDaniel Mims, B. & Grisham, M. B. Humanizing the mouse immune system to study splanchnic organ inflammation. J. Physiol. 596, 3915–3927 (2018).
pubmed: 29574759
pmcid: 6117593
doi: 10.1113/JP275325
Hogg, J. C. & Van Eeden, S. Pulmonary and systemic response to atmospheric pollution. Respirology 14, 336–346 (2009).
pubmed: 19353772
doi: 10.1111/j.1440-1843.2009.01497.x
Sutherland, K. D. et al. Multiple cells-of-origin of mutant K-Ras-induced mouse lung adenocarcinoma. Proc. Natl Acad. Sci. USA 111, 4952–4957 (2014).
pubmed: 24586047
pmcid: 3977239
doi: 10.1073/pnas.1319963111
Choi, J. et al. Inflammatory signals induce AT2 cell-derived damage-associated transient progenitors that mediate alveolar regeneration. Cell Stem Cell 27, 366–382.e7 (2020).
pubmed: 32750316
pmcid: 7487779
doi: 10.1016/j.stem.2020.06.020
Strunz, M. et al. Alveolar regeneration through a Krt8
pubmed: 32678092
pmcid: 7366678
doi: 10.1038/s41467-020-17358-3
Ryu, M. H. et al. Impact of exposure to diesel exhaust on inflammation markers and proteases in former smokers with chronic obstructive pulmonary disease: a randomized, double-blinded, crossover study. Am. J. Respir. Crit. Care Med. 205, 1046–1052 (2022).
pubmed: 35202552
doi: 10.1164/rccm.202104-1079OC
Ryu, M. H. Effects of Traffic-Related Air Pollution Exposure on Older Adults with and without Chronic Obstructive Pulmonary Disease. PhD thesis, Univ. of British Colombia (2021).
Nolan, E. et al. Radiation exposure elicits a neutrophil-driven response in healthy lung tissue that enhances metastatic colonization. Nat. Cancer 3, 173–187 (2022).
pubmed: 35221334
pmcid: 7612918
doi: 10.1038/s43018-022-00336-7
Dost, A. F. M. et al. Organoids model transcriptional hallmarks of oncogenic KRAS activation in lung epithelial progenitor cells. Cell Stem Cell 27, 663–678.e8 (2020).
pubmed: 32891189
pmcid: 7541765
doi: 10.1016/j.stem.2020.07.022
Hiraiwa, K. & van Eeden, S. F. Contribution of lung macrophages to the inflammatory responses induced by exposure to air pollutants. Mediators Inflamm. 2013, 619523 (2013).
pubmed: 24058272
pmcid: 3766602
doi: 10.1155/2013/619523
Klughammer, B. et al. Examining treatment outcomes with erlotinib in patients with advanced non-small cell lung cancer whose tumors harbor uncommon EGFR mutations. J. Thorac. Oncol. 11, 545–555 (2016).
pubmed: 26773740
doi: 10.1016/j.jtho.2015.12.107
Takano, A. P. C. et al. Pleural anthracosis as an indicator of lifetime exposure to urban air pollution: an autopsy-based study in Sao Paulo. Environ. Res. 173, 23–32 (2019).
pubmed: 30884435
doi: 10.1016/j.envres.2019.03.006
Mirsadraee, M. Anthracosis of the lungs: etiology, clinical manifestations and diagnosis: a review. Tanaffos 13, 1–13 (2014).
pubmed: 25852756
pmcid: 4386010
Kunzke, T. et al. Patterns of carbon-bound exogenous compounds in patients with lung cancer and association with disease pathophysiology. Cancer Res. 81, 5862–5875 (2021).
pubmed: 34666994
doi: 10.1158/0008-5472.CAN-21-1175
Deprez, M. et al. A single-cell atlas of the human healthy airways. Am. J. Respir. Crit. Care Med. 202, 1636–1645 (2020).
pubmed: 32726565
doi: 10.1164/rccm.201911-2199OC
Sikkema, L. et al. An integrated cell atlas of the human lung in health and disease. Preprint at bioRxiv https://doi.org/10.1101/2022.03.10.483747 (2022).
Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 47, D941–D947 (2019).
pubmed: 30371878
doi: 10.1093/nar/gky1015
Su, F. et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N. Engl. J. Med. 366, 207–215 (2012).
pubmed: 22256804
pmcid: 3724537
doi: 10.1056/NEJMoa1105358
Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020).
pubmed: 31996850
pmcid: 7021511
doi: 10.1038/s41586-020-1961-1
Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 565, 312–317 (2019).
pubmed: 30602793
doi: 10.1038/s41586-018-0811-x
IARC Working Group on the & Evaluation of Carcinogenic Risks to Humans. IARC Monograph Volume105. Diesel And Gasoline Engine Exhausts And Some Nitroarenes (World Health Organization, 2014).
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC Monograph Volume 109. Outdoor Air Pollution (World Health Organization, 2016).
Turner, M. C. et al. Outdoor air pollution and cancer: an overview of the current evidence and public health recommendations. CA Cancer J. Clin. 70, 460–479 (2020).
doi: 10.3322/caac.21632
Chung, K. M. et al. Endocrine–exocrine signaling drives obesity-associated pancreatic ductal adenocarcinoma. Cell 181, 832–847.e18 (2020).
pubmed: 32304665
pmcid: 7266008
doi: 10.1016/j.cell.2020.03.062
Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).
pubmed: 28855077
doi: 10.1016/S0140-6736(17)32247-X
Crapo, J. D., Barry, B. E., Gehr, P., Bachofen, M. & Weibel, E. R. Cell number and cell characteristics of the normal human lung. Am. Rev. Respir. Dis. 126, 332–327 (1982).
pubmed: 7103258
Doll, R. & Hill, A. B. Smoking and carcinoma of the lung. Preliminary report. 1950. Bull. World Health Organ. 77, 84–93 (1999).
pubmed: 10063665
Kennedy, S. R. et al. Detecting ultralow-frequency mutations by duplex sequencing. Nat. Protoc. 9, 2586–2606 (2014).
pubmed: 25299156
pmcid: 4271547
doi: 10.1038/nprot.2014.170
Stoler, N. & Nekrutenko, A. Sequencing error profiles of Illumina sequencing instruments. NAR Genom. Bioinform. 3, lqab019 (2021).
pubmed: 33817639
pmcid: 8002175
doi: 10.1093/nargab/lqab019
Valentine, C. C. III et al. Direct quantification of in vivo mutagenesis and carcinogenesis using duplex sequencing. Proc. Natl Acad. Sci. USA 117, 33414–33425 (2020).
pubmed: 33318186
pmcid: 7776782
doi: 10.1073/pnas.2013724117
Eeftens, M. et al. Development of land use regression models for PM
pubmed: 22963366
doi: 10.1021/es301948k
Van Buuren, S. & Groothuis-Oudshoorn, K. mice: multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67 (2011).
doi: 10.18637/jss.v045.i03
Department for Environment Food and Rural Affairs. Modelled Background Pollution Data https://uk-air.defra.gov.uk/data/pcm-data#population_weighted_annual_mean_pm25_data (2021).
British Geological Survey. Radon Data: Indicative Atlas of Radon https://www.bgs.ac.uk/datasets/radon-data-indicative-atlas-of-radon/ (2023).
ONS Postcode Directory (Latest) Centroids (Office for National Statistics; 2021); https://geoportal.statistics.gov.uk/datasets/ons-postcode-directory-november-2022/about (accessed 9 March 2023).
(Air Korea; 2021); https://www.airkorea.or.kr/web (accessed 9 March 2023).
Cancer Registry Statistical Data (National Cancer Center; 2021); https://www.ncc.re.kr/main.ncc?uri=english/sub04_Statistics (accessed 13 March 2023).
Taiwan Air Quality Monitoring Network (Environmental Protection Administration; 2022); https://airtw.epa.gov.tw/ENG/Default.aspx (accessed 23 March 2023).
Politi, K. et al. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev. 20, 1496–1510 (2006).
pubmed: 16705038
pmcid: 1475762
doi: 10.1101/gad.1417406
Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001).
pubmed: 11751630
pmcid: 312845
doi: 10.1101/gad.943001
Schantz, M. M. et al. Development of two fine particulate matter standard reference materials (<4 μm and <10 μm) for the determination of organic and inorganic constituents. Anal. Bioanal. Chem. 408, 4257–4266 (2016).
pubmed: 27074778
doi: 10.1007/s00216-016-9519-7
Chan, Y. L. et al. Pulmonary inflammation induced by low-dose particulate matter exposure in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 317, L424–L430 (2019).
pubmed: 31364371
pmcid: 6766715
doi: 10.1152/ajplung.00232.2019
Major, J. et al. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science 369, 712–717 (2020).
pubmed: 32527928
pmcid: 7292500
doi: 10.1126/science.abc2061
Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Desai, T. J., Brownfield, D. G. & Krasnow, M. A. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507, 190–194 (2014).
pubmed: 24499815
pmcid: 4013278
doi: 10.1038/nature12930
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).
pubmed: 29203879
pmcid: 5715110
doi: 10.1038/s41598-017-17204-5
Rosenthal, R., McGranahan, N., Herrero, J., Taylor, B. S. & Swanton, C. deconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol. 17, 31 (2016).
pubmed: 26899170
pmcid: 4762164
doi: 10.1186/s13059-016-0893-4
Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38, 276–278 (2020).
pubmed: 32055031
doi: 10.1038/s41587-020-0439-x
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).
pubmed: 21816040
pmcid: 3163565
doi: 10.1186/1471-2105-12-323
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102
Young, M. D. et al. Single cell derived mRNA signals across human kidney tumors. Nat. Commun. 12, 3896 (2021).
pubmed: 34162837
pmcid: 8222373
doi: 10.1038/s41467-021-23949-5
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
pubmed: 28263959
pmcid: 5600148
doi: 10.1038/nmeth.4197
Dekkers, J. F. et al. Long-term culture, genetic manipulation and xenotransplantation of human normal and breast cancer organoids. Nat. Protoc. 16, 1936–1965 (2021).
pubmed: 33692550
pmcid: 8221035
doi: 10.1038/s41596-020-00474-1
Muiños, F., Martínez-Jiménez, F., Pich, O., Gonzalez-Perez, A. & Lopez-Bigas, N. In silico saturation mutagenesis of cancer genes. Nature 596, 428–432 (2021).
pubmed: 34321661
doi: 10.1038/s41586-021-03771-1