Copeptin adaptive response to SGLT2 inhibitors in patients with type 2 diabetes mellitus: The GliRACo study.
arginine-vasopressin
bioelectrical impedance vector analysis
extracellular fluid
osmotic homeostasis
renin-angiotensin-aldosterone system
sodium glucose co-transporter type 2 inhibitors
Journal
Frontiers in neuroscience
ISSN: 1662-4548
Titre abrégé: Front Neurosci
Pays: Switzerland
ID NLM: 101478481
Informations de publication
Date de publication:
2023
2023
Historique:
received:
14
11
2022
accepted:
03
03
2023
medline:
7
4
2023
entrez:
6
4
2023
pubmed:
7
4
2023
Statut:
epublish
Résumé
In type 2 diabetes mellitus (T2DM), the antidiuretic system participates in the adaptation to osmotic diuresis further increasing urinary osmolality by reducing the electrolyte-free water clearance. Sodium glucose co-transporter type 2 inhibitors (SGLT2i) emphasize this mechanism, promoting persistent glycosuria and natriuresis, but also induce a greater reduction of interstitial fluids than traditional diuretics. The preservation of osmotic homeostasis is the main task of the antidiuretic system and, in turn, intracellular dehydration the main drive to vasopressin (AVP) secretion. Copeptin is a stable fragment of the AVP precursor co-secreted with AVP in an equimolar amount. To investigate the copeptin adaptive response to SGLT2i, as well as the induced changes in body fluid distribution in T2DM patients. The GliRACo study was a prospective, multicenter, observational research. Twenty-six consecutive adult patients with T2DM were recruited and randomly assigned to empagliflozin or dapagliflozin treatment. Copeptin, plasma renin activity, aldosterone and natriuretic peptides were evaluated at baseline (T0) and then 30 (T30) and 90 days (T90) after SGLT2i starting. Bioelectrical impedance vector analysis (BIVA) and ambulatory blood pressure monitoring were performed at T0 and T90. Among endocrine biomarkers, only copeptin increased at T30, showing subsequent stability (7.5 pmol/L at T0, 9.8 pmol/L at T30, 9.5 pmol/L at T90; In patients with T2DM, SGLT2i promote the release of AVP, thus compensating for persistent osmotic diuresis. This mainly occurs because of a proportional dehydration process between intra and extracellular fluid (i.e., intracellular dehydration rather than extracellular dehydration). The extent of fluid reduction, but not the copeptin response, is affected by the patient's baseline volume conditions. Clinicaltrials.gov, identifier NCT03917758.
Identifiants
pubmed: 37021137
doi: 10.3389/fnins.2023.1098404
pmc: PMC10067557
doi:
Banques de données
ClinicalTrials.gov
['NCT03917758']
Types de publication
Journal Article
Langues
eng
Pagination
1098404Informations de copyright
Copyright © 2023 Berton, Parasiliti-Caprino, Prencipe, Bioletto, Lopez, Bona, Caputo, Rumbolo, Ponzetto, Settanni, Gasco, Mengozzi, Ghigo, Grottoli, Maccario and Benso.
Déclaration de conflit d'intérêts
AMB received fees from Thermo Fisher Diagnostics for previous editorial collaborations and oral presentations. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Am J Clin Nutr. 1995 Feb;61(2):269-70
pubmed: 7840061
N Engl J Med. 2016 Jul 28;375(4):323-34
pubmed: 27299675
J Cardiol. 2018 May;71(5):471-476
pubmed: 29415819
Rev Endocr Metab Disord. 2019 Sep;20(3):283-294
pubmed: 31656992
Hormones (Athens). 2023 Jan 19;:
pubmed: 36656532
Am J Physiol Renal Physiol. 2005 Nov;289(5):F1031-9
pubmed: 15972390
N Engl J Med. 2017 Aug 17;377(7):644-657
pubmed: 28605608
Diabetes Care. 2013 Nov;36(11):3639-45
pubmed: 23863910
N Engl J Med. 2015 Nov 26;373(22):2117-28
pubmed: 26378978
Nephron. 2001 Jan;87(1):8-18
pubmed: 11174021
J Hypertens. 2018 Dec;36(12):2284-2309
pubmed: 30379783
Compr Physiol. 2014 Jan;4(1):257-85
pubmed: 24692140
Diabetes Obes Metab. 2013 Sep;15(9):853-62
pubmed: 23668478
Diabetes Metab. 2020 Jun;46(3):203-209
pubmed: 31816431
J Am Heart Assoc. 2017 May 18;6(5):
pubmed: 28522675
Eur J Heart Fail. 2019 May;21(5):665-675
pubmed: 30895697
Diabetes Metab Res Rev. 2011 Oct;27(7):639-53
pubmed: 21695768
Nat Rev Nephrol. 2021 Jan;17(1):65-77
pubmed: 33005037
Curr Hypertens Rep. 2018 Mar 19;20(3):19
pubmed: 29556787
Can J Diabetes. 2019 Feb;43(1):34-39
pubmed: 30026043
N Engl J Med. 2019 Jan 24;380(4):347-357
pubmed: 30415602
J Am Soc Nephrol. 2020 Mar;31(3):615-624
pubmed: 32019783
Curr Opin Nephrol Hypertens. 2017 Jul;26(4):311-318
pubmed: 28403013
J Clin Med. 2019 May 31;8(6):
pubmed: 31159350
Biochem J. 1978 Dec 15;176(3):893-8
pubmed: 747659
Am J Physiol. 1993 Sep;265(3 Pt 2):F361-9
pubmed: 8214094
Nutrients. 2019 Apr 10;11(4):
pubmed: 30974817
Biochim Biophys Acta. 1979 Nov 15;588(1):63-9
pubmed: 227475
J Hypertens. 2020 Sep;38(9):1841-1848
pubmed: 32384388
Am J Nephrol. 2020;51(5):349-356
pubmed: 32241009
Best Pract Res Clin Endocrinol Metab. 2003 Dec;17(4):471-503
pubmed: 14687585
Hypertension. 2001 Nov;38(5):1143-9
pubmed: 11711512
J Clin Endocrinol Metab. 2011 Apr;96(4):1046-52
pubmed: 21289257
Diabetes Obes Metab. 2018 Mar;20(3):479-487
pubmed: 29024278
Clin Liver Dis (Hoboken). 2018 Jul 26;11(6):141-144
pubmed: 30992805
J Endocrinol Invest. 2021 Jul;44(7):1533-1541
pubmed: 33247422
Int Urol Nephrol. 2022 Apr;54(4):827-841
pubmed: 34273060
Metabolism. 2002 Sep;51(9):1184-90
pubmed: 12200765