Immunological impact of cytokines on the chikungunya virus pathophysiology: A literature narrative review.
chikungunya fever
chikungunya virus
cytokines
immune response
pathophysiology
Journal
Reviews in medical virology
ISSN: 1099-1654
Titre abrégé: Rev Med Virol
Pays: England
ID NLM: 9112448
Informations de publication
Date de publication:
07 2023
07 2023
Historique:
revised:
16
12
2022
received:
30
09
2022
accepted:
08
03
2023
medline:
10
7
2023
pubmed:
7
4
2023
entrez:
6
4
2023
Statut:
ppublish
Résumé
The chikungunya virus (CHIKV) is a member of the genus Alphavirus, family Togaviridae. CHIKV causes an acute systemic febrile condition, accompanied by severe polyarthralgia, intense muscle pain, and maculopapular exanthema, which may still occur in many patients. In rare cases, unusual symptoms may occur, eventually worsening the condition and resulting in a fatal outcome. It is a single-stranded, non-segmented RNA virus with a genome of approximately 11,805 nucleotides that organises a genetic and molecular chain that encodes non-structural proteins (nsP1, nsP2, nsP3, nsP4) and structural proteins (E3, E2, 6K, and E1). The fundamental role of immune response in the evolution of the disease is known. Understanding the role of immune response in the pathogenesis of CHIKV infection is challenging. In this context, innate and adaptive immune responses establish a connective interface that induces the production of various mediators that modulate the strategy of inhibiting viral replication. However, the immune escape articulated by the virus indicates that the action of pro-and anti-inflammatory cytokines contributes to the worsening of the disease and potentiates tissue damage with joint involvement. In this review, we discuss the role of the primary pro-and anti-inflammatory cytokines in the immunopathological processes of chikungunya fever.
Substances chimiques
Cytokines
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2441Subventions
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 439971/2016-0
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 303999/2016-0
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 310295/2021-1
Organisme : National Institute for Science and Technology in Emerging and Reemerging Viruses
ID : 4063602022/7
Informations de copyright
© 2023 John Wiley & Sons Ltd.
Références
Weaver SC. Arrival of chikungunya virus in the new world: prospects for spread and impact on public health. PLoS Negl Trop Dis. 2014;8(6):6-9. https://doi.org/10.1371/journal.pntd.0002921
Vazeille M, Moutailler S, Coudrier D, et al. Two chikungunya isolates from the outbreak of La reunion (Indian ocean) exhibit different patterns of infection in the mosquito. Aedes albopictus. 2007;11. https://doi.org/10.1371/journal.pone.0001168
Carey DE. Chikungunya and dengue: a case of mistaken identity? J Hist Med Allied Sci. 1971;26(3):243-262. https://doi.org/10.1093/jhmas/xxvi.3.243
Kuno G. A Re-examination of the history of etiologic confusion between dengue and chikungunya. PLoS Negl Trop Dis. 2015;9(11):1-11. https://doi.org/10.1371/journal.pntd.0004101
Robinson MC, Haddow A. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952-1953. Trans R Soc Trop Med Hyg. 1957;51(3):238-240. https://doi.org/10.1016/0035-9203(57)90022-6
Ross RW. The newala epidemic: III. The virus: isolation, pathogenic properties and relationship to the epidemic. J Hyg. 1956;54(2):177-191. https://doi.org/10.1017/S0022172400044442
Khan AH, Morita K, del Carmen Parquet M, Hasebe F, Mathenge EGM, Igarashi A. Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J Gen Virol. 2002;83(12):3075-3084. https://doi.org/10.1099/0022-1317-83-12-3075
Sourisseau M, Schilte C, Casartelli N, et al. Characterization of reemerging chikungunya virus. PLoS Pathog. 2007;3(6):0804-0817. https://doi.org/10.1371/journal.ppat.0030089
Her Z, Malleret B, Chan M, et al. Active infection of human blood monocytes by chikungunya virus triggers an innate immune response. J Immunol. 2010;184(10):5903-5913. https://doi.org/10.4049/jimmunol.0904181
Gasque P, Couderc T, Lecuit M, Roques P, Ng LFP. Chikungunya virus pathogenesis and immunity. Vector-Borne Zoonotic Dis. 2015;15(4):241-249. https://doi.org/10.1089/vbz.2014.1710
Teng TS, Kam YW, Lee B, et al. A Systematic Meta-Analysis of Immune Signatures in Acute Chikungunya Virus-Infected Patients. Vol 13; 2015. http://jid.oxfordjournals.org/
Khongwichit S, Chansaenroj J, Chirathaworn C, Poovorawan Y. Chikungunya virus infection: molecular biology, clinical characteristics, and epidemiology in Asian countries. J Biomed Sci. 2021;28(1):1-17. https://doi.org/10.1186/s12929-021-00778-8
Queyriaux B, Simon F, Grandadam M, Michel R, Tolou H, Boutin JP. Clinical burden of chikungunya virus infection. Lancet. 2008;8(1):68-69. https://doi.org/10.1016/s1473-3099(07)70294-3
Schilte C, Staikovsky F, Couderc T, et al. Chikungunya virus-associated long-term arthralgia: a 36-month prospective longitudinal study. PLoS Negl Trop Dis. 2013;7(3):e2137. https://doi.org/10.1371/journal.pntd.0002137
Javelle E, Ribera A, Degasne I, Gaüzère BA, Marimoutou C, Simon F. Specific management of post-chikungunya rheumatic disorders: a retrospective study of 159 cases in reunion island from 2006-2012. PLoS Negl Trop Dis. 2015;9(3):1-18. https://doi.org/10.1371/journal.pntd.0003603
Marimoutou C, Ferraro J, Javelle E, Deparis X, Simon F. Chikungunya infection: self-reported rheumatic morbidity and impaired quality of life persist 6 years later. Clin Microbiol Infect. 2015;21(7):688-693. https://doi.org/10.1016/j.cmi.2015.02.024
da Cunha RV, Trinta KS. Chikungunya virus: clinical aspects and treatment. Mem Inst Oswaldo Cruz. 2017;112(8):523-531. https://doi.org/10.1590/0074-02760170044
de Brito CAA, Marques CDL, Falcão MB, et al. Update on the treatment of musculoskeletal manifestations in Chikungunya fever: a guideline. Rev Soc Bras Med Trop. 2020;53:1-8. https://doi.org/10.1590/0037-8682-0517-2019
Kumar R, Sharma MK, Jain SK, Yadav SK, Singhal AK. Cutaneous manifestations of chikungunya fever: observations from an outbreak at a Tertiary Care Hospital in Southeast Rajasthan, India. Indian Dermatol Online J. 2017;8(5):336-342. https://doi.org/10.4103/idoj.IDOJ
Panigrahi A, Chakraborty S, Sil A. Chik sign in chikungunya fever. Infection. 2021;49(5):1075-1076. https://doi.org/10.1007/s15010-020-01472-x
Chakraborty U, Biswas P, Chandra A, Pal J, Ray AK. Chik sign: post-chikungunya hyperpigmentation. Qjm. 2021;114(2):137-138. https://doi.org/10.1093/qjmed/hcaa329
Sil A, Biswas SK, Bhanja DB, Das S, Panigrahi A. Post-chikungunya hyperpigmentation. Postgrad Med J. 2021;97(1143):59-60. https://doi.org/10.1136/postgradmedj-2020-137504
CDC PAHO. Preparedness and Response for Chikungunya Virus Introduction in the Americas; 2011.
Duvignaud A, Fianu A, Bertolotti A, et al. Rheumatism and chronic fatigue, the two facets of post-chikungunya disease: the TELECHIK cohort study on Reunion island. Epidemiol Infect. 2018;146(5):633-641. https://doi.org/10.1017/S0950268818000031
Economopoulou A, Dominguez M, Helynck B, et al. Atypical Chikungunya virus infections: clinical manifestations, mortality and risk factors for severe disease during the 2005-2006 outbreak on Réunion. Epidemiol Infect. 2009;137(4):534-541. https://doi.org/10.1017/S0950268808001167
Kee A, Yang S, Tambyah P, Desai S, Sainani G, Katrak S. Atypical chikungunya virus infections in immunocompromised patients. Am J Neuroradiol. 2008;29(9):1636-1637. https://doi.org/10.3174/ajnr.A1133
Das T, Jaffar-Bandjee MC, Hoarau JJ, et al. Chikungunya fever: CNS infection and pathologies of a re-emerging arbovirus. Prog Neurobiol. 2010;91(2):121-129. https://doi.org/10.1016/j.pneurobio.2009.12.006
Rajapakse S, Rodrigo C, Rajapakse A. Atypical manifestations of chikungunya infection. Trans R Soc Trop Med Hyg. 2010;104(2):89-96. https://doi.org/10.1016/j.trstmh.2009.07.031
Bonifay T, Lienne JF, Bagoée C, et al. Prevalence and risk factors of post chikungunya rheumatic musculoskeletal disorders: a prospective follow-up study in French Guiana. Eur J Clin Microbiol Infect Dis. 2018;37(11):2159-2164. https://doi.org/10.1007/s10096-018-3353-0
Provenzano G, Da Fonseca MLG, Lomelino JP, Vianna RNG. Cilioretinal artery obstruction as a complication of retinitis caused by chikungunya virus. Ocul Immunol Inflamm. 2020;00(00):1-4. https://doi.org/10.1080/09273948.2020.1826540
Sarkar JK. Virological studies of haemorrhagic fever in Calcutta. Bull World Health Organ. 1966;35(1):59. https://www.cabdirect.org/cabdirect/abstract/19691000024
Nimmannitya S, Halstead SB, Cohen SN, Margiotta MR. Dengue and chikungunya virus infection in man in Thailand, 1962-1964. I. Observations on hospitalized patients with hemorrhagic fever. Am J Trop Med Hyg. 1969;18(6):984-996. https://doi.org/10.4269/ajtmh.1969.18.984
van Aalst M, Nelen CM, Goorhuis A, Stijnis C, Grobusch MP. Long-term sequelae of chikungunya virus disease: a systematic review. Trav Med Infect Dis. 2017;15:8-22. https://doi.org/10.1016/j.tmaid.2017.01.004
Mehta R, Soares CN, Medialdea-Carrera R, et al. The spectrum of neurological disease associated with Zika and chikungunya viruses in adults in Rio de Janeiro, Brazil: a case series. PLoS Negl Trop Dis. 2018;12(2):e0006212. https://doi.org/10.1371/journal.pntd.0006212
Alvarez MF, Bolívar-Mejía A, Rodriguez-Morales AJRVE, Ramirez-Vallejo E. Cardiovascular involvement and manifestations of systemic Chikungunya virus infection: a systematic review. F1000Research. 2017;6:1-22. https://doi.org/10.12688/f1000research.11078.1
Mahendradas P, Avadhani K, Shetty R. Chikungunya and the eye: a review. J Ophthalmic Inflamm Infect. 2013;3(1):1-9. https://doi.org/10.1186/1869-5760-3-35
Kirui J, Abidine Y, Lenman A, et al. Chikungunya virus cell entry. Cells. 2021;10(7):1-25.
Basore K, Kim AS, Nelson CA, et al. Cryo-EM structure of chikungunya virus in complex with the Mxra8 receptor. Cell. 2019;177(7):1725-1737.e16. https://doi.org/10.1016/j.cell.2019.04.006
Zhang R, Kim AS, Fox JM, et al. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature. 2018;557(7706):570-574. https://doi.org/10.1038/s41586-018-0121-3
Yang L, Geng T, Yang G, et al. Macrophage scavenger receptor 1 controls Chikungunya virus infection through autophagy in mice. Commun Biol. 2020;3(1):1-11. https://doi.org/10.1038/s42003-020-01285-6
Bernard E, Solignat M, Gay B, et al. Endocytosis of chikungunya virus into mammalian cells: role of clathrin and early endosomal compartments. PLoS One. 2010;5(7):e11479. https://doi.org/10.1371/journal.pone.0011479
Badar N, Ikram A, Salman M, et al. Chikungunya virus: molecular epidemiology of nonstructural proteins in Pakistan. PLoS One. 2021;16(12 December):1-13. https://doi.org/10.1371/journal.pone.0260424
Gottipati K, Woodson M, Choi KH. Membrane binding and rearrangement by chikungunya virus capping enzyme nsP1. Virology. 2020;544(February):31-41. https://doi.org/10.1016/j.virol.2020.02.006
Wong KZ, Chu JJH. The interplay of viral and host factors in chikungunya virus infection: targets for antiviral strategies. Viruses. 2018;10(6):294. https://doi.org/10.3390/v10060294
Bae S, Lee JY, Myoung J. Chikungunya virus nsP2 impairs MDA5/RIG-I-mediated induction of NF-κB promoter activation: a potential target for virus-specific therapeutics. J Microbiol Biotechnol. 2020;30(12):1801-1809. https://doi.org/10.4014/JMB.2012.12005
Antoine AF, Montpellier C, Cailliau K, Browaeys-Poly E, Vilain JP, Dubuisson J. The Alphavirus 6K protein activates endogenous ionic conductances when expressed in Xenopus oocytes. J Membr Biol. 2007;215(1):37-48. https://doi.org/10.1007/s00232-007-9003-6
Kiiver K, Tagen I, Žusinaite E, Tamberg N, Fazakerley JK, Merits A. Properties of non-structural protein 1 of Semliki forest virus and its interference with virus replication. J Gen Virol. 2008;89(6):1457-1466. https://doi.org/10.1099/vir.0.2008/000299-0
Voss JE, Vaney MC, Duquerroy S, et al. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature. 2010;468(7324):709-712. https://doi.org/10.1038/nature09555
Snyder AJ, Mukhopadhyay S. The alphavirus E3 glycoprotein functions in a clade-specific manner. J Virol. 2012;86(24):13609-13620. https://doi.org/10.1128/jvi.01805-12
Goh LYH, Hobson-Peters J, Prow NA, et al. The chikungunya virus capsid protein contains linear B cell epitopes in the N- and C-terminal regions that are dependent on an intact C-terminus for antibody recognition. Viruses. 2015;7(6):2943-2964. https://doi.org/10.3390/v7062754
Meertens L, Hafirassou ML, Couderc T, et al. FHL1 is a major host factor for chikungunya virus infection. Nature. 2019;574(7777):259-263. https://doi.org/10.1038/s41586-019-1578-4
Rathore APS, Haystead T, Das PK, Merits A, Ng ML, Vasudevan SG. Chikungunya virus nsP3 & nsP4 interacts with HSP-90 to promote virus replication: HSP-90 inhibitors reduce CHIKV infection and inflammation in vivo. Antivir Res. 2014;103(1):7-16. https://doi.org/10.1016/j.antiviral.2013.12.010
Webb LG, Veloz J, Pintado-Silva J, et al. Chikungunya virus antagonizes cGAS-STING mediated type-I interferon responses by degrading cGAS. PLoS Pathog. 2020;16(10):1-28. https://doi.org/10.1371/journal.ppat.1008999
Her Z, Teng T, Tan JJ, et al. Loss of TLR3 aggravates CHIKV replication and pathology due to an altered virus-specific neutralizing antibody response. EMBO Mol Med. 2015;7(1):24-41. https://doi.org/10.15252/emmm.201404459
Schwartz O, Albert ML. Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol. 2010;8(7):491-500. https://doi.org/10.1038/nrmicro2368
Geng T, Lin T, Yang D, et al. A critical role for STING signaling in limiting pathogenesis of chikungunya virus. J Infect Dis. 2021;223(12):2186-2196. https://doi.org/10.1093/infdis/jiaa694
Constant LEC, Rajsfus BF, Carneiro PH, Sisnande T, Mohana-Borges R, Allonso D. Overview on chikungunya virus infection: from epidemiology to state-of-the-art experimental models. Front Microbiol. 2021;12:1-20. https://doi.org/10.3389/fmicb.2021.744164
Patil P, Agrawal M, Almelkar S, et al. In vitro and in vivo studies reveal α-Mangostin, a xanthonoid from Garcinia mangostana, as a promising natural antiviral compound against chikungunya virus. Virol J. 2021;18(1):1-12. https://doi.org/10.1186/s12985-021-01517-z
Prow NA, Hirata TDC, Tang B, et al. Exacerbation of chikungunya virus rheumatic immunopathology by a high fiber diet and butyrate. Front Immunol. 2019;10:1-20. https://doi.org/10.3389/fimmu.2019.02736
Torres-Ruesta A, Teo TH, Chan YH, Rénia L, Ng LFP. Pathogenic Th1 responses in CHIKV-induced inflammation and their modulation upon Plasmodium parasites co-infection. Immunol Rev. 2020;294(1):80-91. https://doi.org/10.1111/imr.12825
Nayak TK, Mamidi P, Kumar A, et al. Regulation of viral replication, apoptosis and pro-inflammatory responses by 17-aag during chikungunya virus infection in macrophages. Viruses. 2017;9(1):3. https://doi.org/10.3390/v9010003
Gupta S, Mishra KP, Gupta R, Singh SB. Andrographolide - a prospective remedy for chikungunya fever and viral arthritis. Int Immunopharm. 2021;99:108045. https://doi.org/10.1016/j.intimp.2021.108045
Amaral JK, Bilsborrow JB, Schoen RT. Chronic chikungunya arthritis and rheumatoid arthritis: what they have in common. Am J Med. 2020;133(3):e91-e97. https://doi.org/10.1016/j.amjmed.2019.10.005
Bedoui Y, Septembre-Malaterre A, Giry C, et al. Robust cox-2-mediated prostaglandin response may drive arthralgia and bone destruction in patients with chronic inflammation post-Chikungunya. PLoS Negl Trop Dis. 2021;15(2):1-23. https://doi.org/10.1371/journal.pntd.0009115
Suhrbier A. Rheumatic manifestations of chikungunya: emerging concepts and interventions. Nat Rev Rheumatol. 2019;15(10):597-611. https://doi.org/10.1038/s41584-019-0276-9
Venugopalan A, Ghorpade RP, Chopra A. Cytokines in acute chikungunya. PLoS One. 2014;9(10):e111305. https://doi.org/10.1371/journal.pone.0111305
McCarthy MK, Reynoso GV, Winkler ES, et al. MyD88-dependent influx of monocytes and neutrophils impairs lymph node B cell responses to chikungunya virus infection via Irf5, Nos2 and Nox2. PLoS Pathog. 2020;16(1):e1008292. https://doi.org/10.1371/journal.ppat.1008292
Teo TH, Her Z, Tan JJL, et al. Caribbean and La réunion chikungunya virus isolates differ in their capacity to induce proinflammatory Th1 and NK cell responses and acute joint pathology. J Virol. 2015;89(15):7955-7969. https://doi.org/10.1128/jvi.00909-15
Ng LFP, Chow A, Sun YJ, et al. IL-1β, IL-6, and RANTES as biomarkers of Chikungunya severity. PLoS One. 2009;4(1):e4261. https://doi.org/10.1371/journal.pone.0004261
Kam YW, Simarmata D, Chow A, et al. Early appearance of neutralizing immunoglobulin G3 antibodies is associated with chikungunya virus clearance and long-term clinical protection. J Infect Dis. 2012;205(7):1147-1154. https://doi.org/10.1093/infdis/jis033
Chow A, Her Z, Ong EKS, et al. Persistent arthralgia induced by Chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor. J Infect Dis. 2011;203(2):149-157. https://doi.org/10.1093/infdis/jiq042
Chopra A, Anuradha V, Ghorpade R, Saluja M. Acute Chikungunya and persistent musculoskeletal pain following the 2006 Indian epidemic: a 2-year prospective rural community study. Epidemiol Infect. 2012;140(5):842-850. https://doi.org/10.1017/S0950268811001300
Mathew AJ, Ganapati A, Kabeerdoss J, et al. Chikungunya infection: a global public health menace. Curr Allergy Asthma Rep. 2017;17(2):13. https://doi.org/10.1007/s11882-017-0680-7
Chen W, Foo SS, Zaid A, et al. Specific inhibition of NLRP3 in chikungunya disease reveals a role for inflammasomes in alphavirus-induced inflammation. Nat Microbiol. 2017;2(10):1435-1445. https://doi.org/10.1038/s41564-017-0015-4
Srivastava P, Kumar A, Hasan A, et al. Disease resolution in chikungunya-what decides the outcome? Front Immunol. 2020;11. https://doi.org/10.3389/fimmu.2020.00695
Selvamani SP, Mishra R, Singh SK. Chikungunya virus exploits miR-146a to regulate NF-κB pathway in human synovial fibroblasts. PLoS One. 2014;9(8):19-22. https://doi.org/10.1371/journal.pone.0103624
Valdés-López JF, Velilla P, Urcuqui-Inchima S. Vitamin D modulates the expression of toll-like receptors and pro-inflammatory cytokines without affecting Chikungunya virus replication, in monocytes and macrophages. Acta Trop. 2022;232:232. https://doi.org/10.1016/j.actatropica.2022.106497
Tanabe ISB, Tanabe ELL, Santos EC, et al. Cellular and molecular immune response to chikungunya virus infection. Front Cell Infect Microbiol. 2018;8. https://doi.org/10.3389/fcimb.2018.00345
Versteeg L, Febres MEC, Beaumier CM. The role of cellular immune responses on chikungunya virus infection-induced arthritis. Curr Trop Med Reports. 2016;3(2):60-66. https://doi.org/10.1007/s40475-016-0074-2
Hoarau JJ, Jaffar Bandjee MC, Krejbich Trotot P, et al. Persistent chronic inflammation and infection by chikungunya arthritogenic alphavirus in spite of a robust host immune response. J Immunol. 2010;184(10):5914-5927. https://doi.org/10.4049/jimmunol.0900255
Wilson JAC, Prow NA, Schroder WA, et al. RNA-seq analysis of chikungunya virus infection and identification of granzyme A as a major promoter of arthritic inflammation. PLoS Pathog. 2017;13(2):e1006155. https://doi.org/10.1371/journal.ppat.1006155
Schanoski AS, Le TT, Kaiserman D, et al. Granzyme A in chikungunya and other arboviral infections. Front Immunol. 2020;10. https://doi.org/10.3389/fimmu.2019.03083
Dias CNdeS, Gois BM, Lima VS, et al. Human CD8 T-cell activation in acute and chronic chikungunya infection. Immunology. 2018;155(4):499-504. https://doi.org/10.1111/imm.12992
Mapalagamage M, Weiskopf D, Sette A, De Silva AD. Current understanding of the role of T cells in chikungunya, dengue and Zika infections. Viruses. 2022;14(2):242. https://doi.org/10.3390/v14020242
Petitdemange C, Wauquier N, Vieillard V. Control of immunopathology during chikungunya virus infection. J Allergy Clin Immunol. 2015;135(4):846-855. https://doi.org/10.1016/j.jaci.2015.01.039
Krejbich-Trotot P, Denizot M, Hoarau J, Jaffar-Bandjee M, Das T, Gasque P. Chikungunya virus mobilizes the apoptotic machinery to invade host cell defenses. FASEB J. 2011;25(1):314-325. https://doi.org/10.1096/fj.10-164178
Davenport BJ, Bullock C, McCarthy MK, et al. Chikungunya virus evades antiviral CD8 + T cell responses to establish persistent infection in joint-associated tissues. J Virol. 2020;94(9). https://doi.org/10.1128/jvi.02036-19
Liu X, Poo YS, Alves JC, et al. Interleukin-17 contributes to chikungunya virus-induced disease. mBio. 2022;13(2):1-12. https://doi.org/10.1128/mbio.00289-22
Neupane B, Acharya D, Nazneen F, Gonzalez-Fernandez G, Flynt AS, Bai F. Interleukin-17A facilitates chikungunya virus infection by inhibiting IFN-α2 expression. Front Immunol. 2020;11. https://doi.org/10.3389/fimmu.2020.588382
Cook LE, Locke MC, Young AR, et al. Distinct roles of interferon alpha and beta in controlling chikungunya virus replication and modulating neutrophil-mediated inflammation. J Virol. 2019;94(1). https://doi.org/10.1128/jvi.00841-19
Assunção-Miranda I, Cruz-Oliveira C, Da Poian AT. Molecular mechanisms involved in the pathogenesis of alphavirus-induced arthritis. BioMed Res Int. 2013;2013:1-11. https://doi.org/10.1155/2013/973516
Silva LA, Dermody TS. Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies. J Clin Invest. 2017;127(3):737-749. https://doi.org/10.1172/JCI84417
Chirathaworn C, Poovorawan Y, Lertmaharit S, Wuttirattanakowit N. Cytokine levels in patients with chikungunya virus infection. Asian Pac J Tropical Med. 2013;6(8):631-634. https://doi.org/10.1016/S1995-7645(13)60108-X
Kulkarni SP, Ganu M, Jayawant P, Thanapati S, Ganu A, Tripathy AS. Regulatory T cells and IL-10 as modulators of chikungunya disease outcome: a preliminary study. Eur J Clin Microbiol Infect Dis. 2017;36(12):2475-2481. https://doi.org/10.1007/s10096-017-3087-4
Paiva IA, Badolato-Corrêa J, Familiar-Macedo D, De-Oliveira-pinto LM. Th17 cells in viral infections-friend or foe? Cells. 2021;10(5):1159. https://doi.org/10.3390/cells10051159
Gualberto Cavalcanti N, MeloVilar K, Branco Pinto Duarte AL, et al. IL-27 in patients with Chikungunya fever: a possible chronicity biomarker? Acta Trop. 2019;196:48-51. https://doi.org/10.1016/j.actatropica.2019.05.005
Peters A, Fowler KD, Chalmin F, Merkler D, Kuchroo VK, Pot C. IL-27 induces Th17 differentiation in the absence of STAT1 signaling. J Immunol. 2015;195(9):4144-4153. https://doi.org/10.4049/jimmunol.1302246
Valdés-López JF, Fernandez GJ, Urcuqui-Inchima S. Interleukin 27 as an inducer of antiviral response against chikungunya virus infection in human macrophages. Cell Immunol. 2021;367:367. https://doi.org/10.1016/j.cellimm.2021.104411
Dhenni R, Yohan B, Alisjahbana B, et al. Comparative cytokine profiling identifies common and unique serum cytokine responses in acute chikungunya and dengue virus infection. BMC Infect Dis. 2021;21(1):639. https://doi.org/10.1186/s12879-021-06339-6
Sánchez-Arcila JC, Badolato-Correa J, De Souza TMA, et al. Clinical, virological, and immunological profiles of DENV, ZIKV, and/or CHIKV-infected Brazilian patients. Intervirology. 2020;63(1-6):33-45. https://doi.org/10.1159/000510223
Poo YS, Rudd PA, Gardner J, et al. Multiple immune factors are involved in controlling acute and chronic chikungunya virus infection. PLoS Negl Trop Dis. 2014;8(12):e3354. https://doi.org/10.1371/journal.pntd.0003354
Valdés-López JF, Fernandez GJ, Urcuqui-Inchima S. Synergistic effects of toll-like receptor 1/2 and toll-like receptor 3 signaling triggering interleukin 27 gene expression in chikungunya virus-infected macrophages. Front Cell Dev Biol. 2022;10. https://doi.org/10.3389/fcell.2022.812110
Malvy D, Ezzedine K, Mamani-Matsuda M, et al. Destructive arthritis in a patient with chikungunya virus infection with persistent specific IgM antibodies. BMC Infect Dis. 2009;9(1):200. https://doi.org/10.1186/1471-2334-9-200
Dupuis-Maguiraga L, Noret M, Brun S, Le Grand R, Gras G, Roques P. Chikungunya disease: infection-associated markers from the acute to the chronic phase of arbovirus-induced arthralgia. PLoS Negl Trop Dis. 2012;6(3):e1446. https://doi.org/10.1371/journal.pntd.0001446
Poo YS, Nakaya H, Gardner J, et al. CCR2 deficiency promotes exacerbated chronic erosive neutrophil-dominated chikungunya virus arthritis. J Virol. 2014;88(12):6862-6872. https://doi.org/10.1128/jvi.03364-13
Ninla-Aesong P, Mitarnun W, Noipha K. Proinflammatory cytokines and chemokines as biomarkers of persistent arthralgia and severe disease after chikungunya virus infection: a 5-year follow-up study in Southern Thailand. Viral Immunol. 2019;32(10):442-452. https://doi.org/10.1089/vim.2019.0064
Lohachanakul J, Phuklia W, Thannagith M, Thonsakulprasert T, Ubol S. High concentrations of circulating interleukin-6 and monocyte chemotactic protein-1 with low concentrations of interleukin-8 were associated with severe chikungunya fever during the outbreak in Thailand. Microbiol Immunol. 2012;56(2):134-138. https://doi.org/10.1111/j.1348-0421.2011.0417.x
Bao K, Reinhardt RL. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine. 2015;75(1):25-37. https://doi.org/10.1016/j.cyto.2015.05.008
Hawman DW, Fox JM, Ashbrook AW, et al. Pathogenic chikungunya virus evades B cell responses to establish persistence. Cell Rep. 2016;16(5):1326-1338. https://doi.org/10.1016/j.celrep.2016.06.076
Verma P, Bhatnagar S, Kumar P, et al. Analysis of antibody response (IgM, IgG, IgG3) to Chikungunya virus using a panel of peptides derived from envelope protein for serodiagnosis. Clin Chem Lab Med. 2014;52(2):297-307. https://doi.org/10.1515/cclm-2013-0363
Kam YW, Pok KY, Eng KE, et al. Sero-prevalence and cross-reactivity of chikungunya virus specific anti-E2EP3 antibodies in arbovirus-infected patients. PLoS Negl Trop Dis. 2015;9(1):e3445. https://doi.org/10.1371/journal.pntd.0003445
Bhatnagar S, Kumar P, Mohan T, et al. Evaluation of multiple antigenic peptides based on the Chikungunya E2 protein for improved serological diagnosis of infection. Viral Immunol. 2015;28(2):107-112. https://doi.org/10.1089/vim.2014.0031
Fong RH, Banik SSR, Mattia K, et al. Exposure of epitope residues on the outer face of the chikungunya virus envelope trimer determines antibody neutralizing efficacy. J Virol. 2014;88(24):14364-14379. https://doi.org/10.1128/jvi.01943-14
Reddy V, Desai A, Krishna SS, Vasanthapuram R. Molecular mimicry between chikungunya virus and host components: a possible mechanism for the arthritic manifestations. PLoS Negl Trop Dis. 2017;11(1):e0005238. https://doi.org/10.1371/journal.pntd.0005238
Lum FM, Couderc T, Chia BS, et al. Antibody-mediated enhancement aggravates chikungunya virus infection and disease severity. Sci Rep. 2018;8(1):1-14. https://doi.org/10.1038/s41598-018-20305-4