Estimation of genetic diversity and population genetic structure in Gymnema sylvestre (Retz.) R. Br. ex Schult. populations using DAMD and ISSR markers.
DAMD
Genetic diversity
Gymnema sylvestre
ISSR
Population genetic structure
Journal
Journal, genetic engineering & biotechnology
ISSN: 2090-5920
Titre abrégé: J Genet Eng Biotechnol
Pays: Netherlands
ID NLM: 101317150
Informations de publication
Date de publication:
06 Apr 2023
06 Apr 2023
Historique:
received:
03
01
2023
accepted:
20
03
2023
medline:
7
4
2023
entrez:
6
4
2023
pubmed:
7
4
2023
Statut:
epublish
Résumé
Gymnema sylvestre (Retz.) R. Br. ex Schult. is a well-known medicinal plant against diabetes in India. There is as such no organized cultivation in India, and the plant is still being collected from the wild for their therapeutic uses. It is, therefore, important to estimate the genetic diversity and population genetic structure of G. sylvestre to ascertain the genetically diverse germplasm. The present study, therefore, was undertaken to analyze the genetic variability in 118 accessions belonging to 11 wild populations of G. sylvestre using directed amplification of minisatellite-region DNA (DAMD) and inter simple sequence repeats (ISSR). The present genetic analyses of 11 populations with 25 markers (8 DAMD and 17 ISSR) revealed significant genetic diversity (H = 0.26, I = 0.40, PPL = 80.89%) at a species level, while the average genetic diversity at the population level was low. Among the 11 populations studied, PCH and UTK populations showed maximum genetic diversity, followed by KNR and AMB, while TEL population revealed the lowest genetic diversity. AMOVA and G The genetically diverse populations identified during the present study could be a potential genetic resource for further prospecting and conserving this important plant resource.
Sections du résumé
BACKGROUND
BACKGROUND
Gymnema sylvestre (Retz.) R. Br. ex Schult. is a well-known medicinal plant against diabetes in India. There is as such no organized cultivation in India, and the plant is still being collected from the wild for their therapeutic uses. It is, therefore, important to estimate the genetic diversity and population genetic structure of G. sylvestre to ascertain the genetically diverse germplasm. The present study, therefore, was undertaken to analyze the genetic variability in 118 accessions belonging to 11 wild populations of G. sylvestre using directed amplification of minisatellite-region DNA (DAMD) and inter simple sequence repeats (ISSR).
RESULTS
RESULTS
The present genetic analyses of 11 populations with 25 markers (8 DAMD and 17 ISSR) revealed significant genetic diversity (H = 0.26, I = 0.40, PPL = 80.89%) at a species level, while the average genetic diversity at the population level was low. Among the 11 populations studied, PCH and UTK populations showed maximum genetic diversity, followed by KNR and AMB, while TEL population revealed the lowest genetic diversity. AMOVA and G
CONCLUSION
CONCLUSIONS
The genetically diverse populations identified during the present study could be a potential genetic resource for further prospecting and conserving this important plant resource.
Identifiants
pubmed: 37022506
doi: 10.1186/s43141-023-00497-7
pii: 10.1186/s43141-023-00497-7
pmc: PMC10079795
doi:
Types de publication
Journal Article
Langues
eng
Pagination
42Subventions
Organisme : CSIR-PHYTOPHARMACEUTICAL MISSION, HCP-0010
ID : HCP-0010
Informations de copyright
© 2023. The Author(s).
Références
Am J Hum Genet. 1980 May;32(3):314-31
pubmed: 6247908
J Hered. 2016 Sep;107(5):455-62
pubmed: 27271115
AoB Plants. 2020 Dec 02;13(1):plaa065
pubmed: 33442464
Mol Ecol. 2020 Sep;29(18):3413-3428
pubmed: 32743850
Nat Commun. 2021 Jan 22;12(1):516
pubmed: 33483517
Physiol Mol Biol Plants. 2015 Jul;21(3):349-58
pubmed: 26261399
Nucleic Acids Res. 1993 Dec 11;21(24):5782-5
pubmed: 8284229
Mol Biol Evol. 2021 Jun 25;38(7):3022-3027
pubmed: 33892491
Genetics. 2003 Aug;164(4):1567-87
pubmed: 12930761
Bioinformatics. 2012 Oct 1;28(19):2537-9
pubmed: 22820204
Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269-73
pubmed: 291943
Physiol Mol Biol Plants. 2015 Apr;21(2):233-42
pubmed: 25964716
Physiol Mol Biol Plants. 2020 May;26(5):975-984
pubmed: 32377047
J Tradit Complement Med. 2018 Apr 03;8(4):506-514
pubmed: 30302331
Proc Natl Acad Sci U S A. 1991 May 15;88(10):4494-7
pubmed: 11607182
PeerJ. 2021 May 3;9:e11325
pubmed: 33987011
Mol Ecol. 2005 Jul;14(8):2611-20
pubmed: 15969739
Inflammopharmacology. 2023 Jan 20;:
pubmed: 36662401
Folia Biol (Praha). 1999;45(3):97-9
pubmed: 10730897
Sci Rep. 2021 May 14;11(1):10345
pubmed: 33990638
Pharmacogn Mag. 2016 Jul;12(Suppl 4):S407-S413
pubmed: 27761067
Physiol Mol Biol Plants. 2019 May;25(3):753-764
pubmed: 31168237
Pak J Pharm Sci. 2021 Jan;34(1(Supplementary)):307-311
pubmed: 34275855
Cancer Res. 1967 Feb;27(2):209-20
pubmed: 6018555
Genetics. 2000 Jun;155(2):945-59
pubmed: 10835412
Biochem Genet. 2020 Jun;58(3):452-472
pubmed: 32221756
Genet Resour Crop Evol. 2021;68(6):2235-2263
pubmed: 34054223
Biomed Res Int. 2019 Apr 11;2019:3698742
pubmed: 31111050
J Genet Eng Biotechnol. 2021 Aug 10;19(1):118
pubmed: 34374870
Plants (Basel). 2020 Dec 15;9(12):
pubmed: 33333783