CD-CODE: crowdsourcing condensate database and encyclopedia.


Journal

Nature methods
ISSN: 1548-7105
Titre abrégé: Nat Methods
Pays: United States
ID NLM: 101215604

Informations de publication

Date de publication:
05 2023
Historique:
received: 13 07 2022
accepted: 27 02 2023
medline: 12 5 2023
pubmed: 7 4 2023
entrez: 6 4 2023
Statut: ppublish

Résumé

The discovery of biomolecular condensates transformed our understanding of intracellular compartmentalization of molecules. To integrate interdisciplinary scientific knowledge about the function and composition of biomolecular condensates, we developed the crowdsourcing condensate database and encyclopedia ( cd-code.org ). CD-CODE is a community-editable platform, which includes a database of biomolecular condensates based on the literature, an encyclopedia of relevant scientific terms and a crowdsourcing web application. Our platform will accelerate the discovery and validation of biomolecular condensates, and facilitate efforts to understand their role in disease and as therapeutic targets.

Identifiants

pubmed: 37024650
doi: 10.1038/s41592-023-01831-0
pii: 10.1038/s41592-023-01831-0
pmc: PMC10172118
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

673-676

Informations de copyright

© 2023. The Author(s).

Références

Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
doi: 10.1038/nrm.2017.7 pubmed: 28225081 pmcid: 7434221
Alberti, S. & Dormann, D. Liquid-liquid phase separation in disease. Annu. Rev. Genet. 53, 171–194 (2019).
doi: 10.1146/annurev-genet-112618-043527 pubmed: 31430179
Mitrea, D. M., Mittasch, M., Gomes, B. F., Klein, I. A. & Murcko, M. A. Modulating biomolecular condensates: a novel approach to drug discovery. Nat. Rev. Drug Discov. 21, 841–862 (2022).
doi: 10.1038/s41573-022-00505-4 pubmed: 35974095 pmcid: 9380678
Conti, B. A. & Oppikofer, M. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics. Trends Pharmacol. Sci. 43, 820–837 (2022).
doi: 10.1016/j.tips.2022.07.001 pubmed: 36028355
Ning, W. et al. DrLLPS: a data resource of liquid-liquid phase separation in eukaryotes. Nucleic Acids Res. 48, D288–D295 (2020).
doi: 10.1093/nar/gkz1027 pubmed: 31691822
Mészáros, B. et al. PhaSePro: the database of proteins driving liquid-liquid phase separation. Nucleic Acids Res. 48, D360–D367 (2020).
pubmed: 31612960
Li, Q. et al. LLPSDB: a database of proteins undergoing liquid-liquid phase separation in vitro. Nucleic Acids Res. 48, D320–D327 (2020).
doi: 10.1093/nar/gkz778 pubmed: 31906602
You, K. et al. PhaSepDB: a database of liquid-liquid phase separation related proteins. Nucleic Acids Res. 48, D354–D359 (2020).
doi: 10.1093/nar/gkz847 pubmed: 31584089
UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).
doi: 10.1093/nar/gkaa1100
Cunningham, F. et al. Ensembl 2022. Nucleic Acids Res. 50, D988–D995 (2022).
doi: 10.1093/nar/gkab1049 pubmed: 34791404
Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).
doi: 10.1126/science.aal3321 pubmed: 28495876
Mészáros, B., Erdos, G. & Dosztányi, Z. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 46, W329–W337 (2018).
doi: 10.1093/nar/gky384 pubmed: 29860432 pmcid: 6030935
Saar, K. L. et al. Learning the molecular grammar of protein condensates from sequence determinants and embeddings. Proc. Natl Acad. Sci. USA 118, e2019053118 (2021).
doi: 10.1073/pnas.2019053118 pubmed: 33827920 pmcid: 8053968
van Mierlo, G. et al. Predicting protein condensate formation using machine learning. Cell Rep. 34, 108705 (2021).
doi: 10.1016/j.celrep.2021.108705 pubmed: 33535034
Hardenberg, M., Horvath, A., Ambrus, V., Fuxreiter, M. & Vendruscolo, M. Widespread occurrence of the droplet state of proteins in the human proteome. Proc. Natl Acad. Sci. USA 117, 33254–33262 (2021).
doi: 10.1073/pnas.2007670117
Hatos, A., Tosatto, S. C. E., Vendruscolo, M. & Fuxreiter, M. FuzDrop on AlphaFold: visualizing the sequence-dependent propensity of liquid-liquid phase separation and aggregation of proteins. Nucleic Acids Res. 50, W337–W344 (2022).
doi: 10.1093/nar/gkac386 pubmed: 35610022 pmcid: 9252777
Chen, Z. et al. Screening membraneless organelle participants with machine-learning models that integrate multimodal features. Proc. Natl Acad. Sci. USA 119, e2115369119 (2022).
doi: 10.1073/pnas.2115369119 pubmed: 35687670 pmcid: 9214545
Kumar, S. et al. TimeTree 5: an expanded resource for species divergence times. Mol. Biol. Evol. 39, msac174 (2022).
doi: 10.1093/molbev/msac174 pubmed: 35932227 pmcid: 9400175

Auteurs

Nadia Rostam (N)

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
Center for Systems Biology Dresden, Dresden, Germany.

Soumyadeep Ghosh (S)

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
Center for Systems Biology Dresden, Dresden, Germany.

Chi Fung Willis Chow (CFW)

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
Center for Systems Biology Dresden, Dresden, Germany.
Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.

Anna Hadarovich (A)

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
Center for Systems Biology Dresden, Dresden, Germany.

Cedric Landerer (C)

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
Center for Systems Biology Dresden, Dresden, Germany.

Rajat Ghosh (R)

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
Center for Systems Biology Dresden, Dresden, Germany.

HongKee Moon (H)

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.

Lena Hersemann (L)

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.

Diana M Mitrea (DM)

Dewpoint Therapeutics, Boston, MA, USA.

Isaac A Klein (IA)

Dewpoint Therapeutics, Boston, MA, USA.

Anthony A Hyman (AA)

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
Center for Systems Biology Dresden, Dresden, Germany.
Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.

Agnes Toth-Petroczy (A)

Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany. toth-petroczy@mpi-cbg.de.
Center for Systems Biology Dresden, Dresden, Germany. toth-petroczy@mpi-cbg.de.
Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany. toth-petroczy@mpi-cbg.de.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software
Cephalometry Humans Anatomic Landmarks Software Internet
Humans Algorithms Software Artificial Intelligence Computer Simulation

Classifications MeSH