Looking back at prospective modeling of outbreak response strategies for managing global type 2 oral poliovirus vaccine (OPV2) cessation.
cessation
dynamic modeling
eradication
immunization
oral poliovirus vaccine
outbreak response
polio
Journal
Frontiers in public health
ISSN: 2296-2565
Titre abrégé: Front Public Health
Pays: Switzerland
ID NLM: 101616579
Informations de publication
Date de publication:
2023
2023
Historique:
received:
14
11
2022
accepted:
03
03
2023
medline:
11
4
2023
entrez:
10
4
2023
pubmed:
11
4
2023
Statut:
epublish
Résumé
Detection of poliovirus transmission and ongoing oral poliovirus vaccine (OPV) use continue to delay poliomyelitis eradication. In 2016, the Global Polio Eradication Initiative (GPEI) coordinated global cessation of type 2 OPV (OPV2) for preventive immunization and limited its use to emergency outbreak response. In 2019, GPEI partners requested restart of some Sabin OPV2 production and also accelerated the development of a genetically modified novel OPV2 vaccine (nOPV2) that promised greater genetic stability than monovalent Sabin OPV2 (mOPV2). We reviewed integrated risk, economic, and global poliovirus transmission modeling performed before OPV2 cessation, which recommended multiple risk management strategies to increase the chances of successfully ending all transmission of type 2 live polioviruses. Following OPV2 cessation, strategies implemented by countries and the GPEI deviated from model recommended risk management strategies. Complementing other modeling that explores prospective outbreak response options for improving outcomes for the current polio endgame trajectory, in this study we roll back the clock to 2017 and explore counterfactual trajectories that the polio endgame could have followed if GPEI had: (1) managed risks differently after OPV2 cessation and/or (2) developed nOPV2 before and used it exclusively for outbreak response after OPV2 cessation. The implementation of the 2016 model-based recommended outbreak response strategies could have ended (and could still substantially improve the probability of ending) type 2 poliovirus transmission. Outbreak response performance observed since 2016 would not have been expected to achieve OPV2 cessation with high confidence, even with the availability of nOPV2 prior to the 2016 OPV2 cessation. As implemented, the 2016 OPV2 cessation failed to stop type 2 transmission. While nOPV2 offers benefits of lower risk of seeding additional outbreaks, its reduced secondary spread relative to mOPV2 may imply relatively higher coverage needed for nOPV2 than mOPV2 to stop outbreaks.
Identifiants
pubmed: 37033033
doi: 10.3389/fpubh.2023.1098419
pmc: PMC10080024
doi:
Substances chimiques
Poliovirus Vaccine, Oral
0
Types de publication
Review
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1098419Informations de copyright
Copyright © 2023 Thompson, Kalkowska and Badizadegan.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Expert Rev Vaccines. 2020 Jul;19(7):661-686
pubmed: 32741232
Lancet Glob Health. 2020 Oct;8(10):e1264-e1272
pubmed: 32687792
Risk Anal. 2021 Feb;41(2):320-328
pubmed: 32632925
MMWR Morb Mortal Wkly Rep. 2016 Sep 09;65(35):934-8
pubmed: 27606675
J Infect Dis. 2014 Nov 1;210 Suppl 1:S485-97
pubmed: 25316871
BMC Infect Dis. 2016 Mar 24;16:137
pubmed: 27009272
BMC Infect Dis. 2015 Sep 24;15:390
pubmed: 26404780
J Infect Dis. 2017 Jul 1;216(suppl_1):S176-S182
pubmed: 28838194
J Infect Dis. 2022 Oct 17;226(8):1309-1318
pubmed: 35415741
Vaccine. 2023 Apr 6;41 Suppl 1:A122-A127
pubmed: 35307230
NPJ Vaccines. 2020 Mar 20;5(1):26
pubmed: 32218998
BMC Infect Dis. 2015 Sep 24;15:389
pubmed: 26404632
Risk Anal. 2013 Apr;33(4):647-63
pubmed: 22985171
MMWR Morb Mortal Wkly Rep. 2022 Jun 17;71(24):786-790
pubmed: 35709073
Risk Anal. 2021 Feb;41(2):229-247
pubmed: 32339327
Expert Rev Vaccines. 2018 Aug;17(8):739-751
pubmed: 30056767
BMC Infect Dis. 2015 Sep 17;15:374
pubmed: 26381878
Risk Anal. 2013 Apr;33(4):680-702
pubmed: 23470192
Future Microbiol. 2016 Dec;11:1549-1561
pubmed: 27831742
J Infect Dis. 2014 Nov 1;210 Suppl 1:S475-84
pubmed: 25316870
Risk Anal. 2013 Apr;33(4):703-49
pubmed: 23521018
Risk Anal. 2006 Dec;26(6):1471-505
pubmed: 17184393
Science. 2020 Apr 24;368(6489):401-405
pubmed: 32193361
Risk Anal. 2021 Feb;41(2):329-348
pubmed: 33174263
Am J Epidemiol. 1999 Nov 15;150(10):1001-21
pubmed: 10568615
Vaccine. 2023 Apr 6;41 Suppl 1:A142-A152
pubmed: 36402659
Expert Rev Vaccines. 2012 Apr;11(4):449-59
pubmed: 22551030
Expert Rev Vaccines. 2019 Jul;18(7):725-736
pubmed: 31248293
Vaccine. 2023 Apr 6;41 Suppl 1:A12-A18
pubmed: 33962838
BMC Infect Dis. 2015 Sep 17;15:379
pubmed: 26382043
J Infect Dis. 2017 Jul 1;216(suppl_1):S168-S175
pubmed: 28838198
Expert Rev Vaccines. 2017 Jun;16(6):577-586
pubmed: 28437234
MDM Policy Pract. 2017 Mar 01;2(1):2381468317697002
pubmed: 30288417
Anaesth Crit Care Pain Med. 2021 Aug;40(4):100943
pubmed: 34479681
Future Virol. 2018 Aug 10;13(9):617-628
pubmed: 33598044
Risk Anal. 2021 Feb;41(2):248-265
pubmed: 31960533
Vaccine. 2023 Apr 6;41 Suppl 1:A136-A141
pubmed: 33994237
Epidemiol Infect. 2019 Oct 24;147:e295
pubmed: 31647050
Syst Dyn Rev. 2018 Jun;34(1-2):78-120
pubmed: 34552305
BMC Infect Dis. 2015 Sep 17;15:376
pubmed: 26382234
Wkly Epidemiol Rec. 2014 Dec 12;89(50):561-76
pubmed: 25513671
Risk Anal. 2018 Aug;38(8):1701-1717
pubmed: 29314143