Temporal Proteomic and Lipidomic Profiles of Cerulein-Induced Acute Pancreatitis Reveal Novel Insights for Metabolic Alterations in the Disease Pathogenesis.
Journal
ACS omega
ISSN: 2470-1343
Titre abrégé: ACS Omega
Pays: United States
ID NLM: 101691658
Informations de publication
Date de publication:
04 Apr 2023
04 Apr 2023
Historique:
received:
02
01
2023
accepted:
06
03
2023
medline:
11
4
2023
entrez:
10
4
2023
pubmed:
11
4
2023
Statut:
epublish
Résumé
The pathophysiological mechanisms of acute pancreatitis (AP) are complex and have remained a mystery to date, but metabolism is gradually recognized as an important driver of AP onset and development. We used a cerulein-induced AP mouse model to conduct liquid chromatography-mass spectrometry (LC-MS/MS)-based time-course proteomics and lipidomics in order to better understand the underlying metabolic alterations linked with AP. Results showed that a series of significant changes in proteins over time with a boost in expression were enriched in lipase activity, lipoprotein, and lipids absorption and transport regulation. Furthermore, 16 proteins associated with lipid metabolism and signaling pathways together with the whole lipid species changing profile led to the vital identification of changing law in glycerides, phosphoglycerides, and free fatty acids. In addition to lipid metabolism and regulation-associated proteins, several digestive enzymes and adaptive anti-trypsin, stress response, and energy metabolism-related proteins showed an increment in abundance. Notably, central carbon and branched chain amino acid metabolism were enhanced during 0-24 h from the first cerulein stimulation. Taken together, this integrated proteomics and lipidomics revealed a novel metabolic insight into metabolites transforming rules that might be relevant to their function and drug targets investigation. (Created with Biorender.com.).
Identifiants
pubmed: 37033809
doi: 10.1021/acsomega.3c00019
pmc: PMC10077560
doi:
Types de publication
Journal Article
Langues
eng
Pagination
12310-12326Informations de copyright
© 2023 The Authors. Published by American Chemical Society.
Déclaration de conflit d'intérêts
The authors declare no competing financial interest.
Références
Pancreatology. 2021 Mar;21(2):323-333
pubmed: 33558189
Proteomics. 2020 Sep;20(17-18):e1900276
pubmed: 32275110
United European Gastroenterol J. 2018 Jun;6(5):649-655
pubmed: 30083325
Indian J Clin Biochem. 2016 Jul;31(3):253-9
pubmed: 27382195
Lancet. 2020 Sep 5;396(10252):726-734
pubmed: 32891214
Mol Biol Cell. 2003 Jul;14(7):2959-71
pubmed: 12857878
Pancreas. 2018 Jan;47(1):18-24
pubmed: 29200128
J Cell Sci. 2004 Apr 1;117(Pt 9):1709-19
pubmed: 15075232
Gastroenterology. 2018 Feb;154(3):689-703
pubmed: 29074451
J Proteome Res. 2010 Feb 5;9(2):885-96
pubmed: 19954227
Pancreatology. 2019 Jul;19(5):630-637
pubmed: 31262499
J Proteomics. 2011 Dec 21;75(2):708-17
pubmed: 21968429
Clin Transl Gastroenterol. 2017 Apr 13;8(4):e89
pubmed: 28406494
JAMA. 2021 Jan 26;325(4):382-390
pubmed: 33496779
Proteomics. 2008 Sep;8(17):3621-31
pubmed: 18686302
Nat Rev Gastroenterol Hepatol. 2019 Aug;16(8):479-496
pubmed: 31138897
Gut. 2002 Jan;50(1):78-83
pubmed: 11772971
Crit Rev Clin Lab Sci. 2012 Jan-Feb;49(1):18-31
pubmed: 22339380
Cell Metab. 2012 Mar 7;15(3):279-91
pubmed: 22405066
Precis Clin Med. 2019 Jun;2(2):81-86
pubmed: 35692449
F1000Res. 2016 Mar 31;5:
pubmed: 27092249
Phytomedicine. 2022 Feb 17;99:153996
pubmed: 35231826
Molecules. 2022 Jun 17;27(12):
pubmed: 35745003
Clin Chim Acta. 2018 Jan;476:139-145
pubmed: 29183667
Biomed Res Int. 2017;2017:1648385
pubmed: 28904946
J Proteome Res. 2020 Jun 5;19(6):2471-2482
pubmed: 32283030
Metabolites. 2020 Jan 29;10(2):
pubmed: 32013105
J Lipid Res. 2005 May;46(5):839-61
pubmed: 15722563
Front Physiol. 2018 Aug 30;9:1215
pubmed: 30214418
Gastroenterology. 2017 Nov;153(5):1212-1226
pubmed: 28918190
PLoS One. 2019 Jun 18;14(6):e0217633
pubmed: 31211768
Gut. 2017 Feb;66(2):301-313
pubmed: 26642860
Proteomics. 2003 Dec;3(12):2446-53
pubmed: 14673795
Annu Rev Biophys. 2011;40:169-86
pubmed: 21314430
Gut. 2014 Aug;63(8):1313-24
pubmed: 24162590
J Nutr. 1963 Jan;79:37-44
pubmed: 13931920
Gut. 2021 Jan;70(1):194-203
pubmed: 32973069
J Proteomics. 2018 Jun 15;181:190-200
pubmed: 29678717
Am J Pathol. 2008 Apr;172(4):882-92
pubmed: 18349119
Gastroenterology. 2019 May;156(7):1979-1993
pubmed: 30776339
Crit Care. 2015 Mar 17;19:88
pubmed: 25851781
J Amino Acids. 2011;2011:606797
pubmed: 22312466
Eur J Pharmacol. 2008 Aug 20;590(1-3):417-22
pubmed: 18593575
Sci Rep. 2019 May 23;9(1):7764
pubmed: 31123322
J Proteome Res. 2011 Oct 7;10(10):4835-44
pubmed: 21838295
J Clin Gastroenterol. 2014 Mar;48(3):195-203
pubmed: 24172179
Discov Med. 2019 Feb;27(147):101-109
pubmed: 30939294
Pancreatology. 2007;7(4):317-24
pubmed: 17627096
Digestion. 2013;87(4):223-8
pubmed: 23751273
Biochim Biophys Acta Mol Basis Dis. 2021 Jul 1;1867(7):166123
pubmed: 33713791
Pancreas. 2012 Mar;41(2):317-22
pubmed: 22228045
Biochim Biophys Acta. 2012 Sep;1824(9):1058-67
pubmed: 22713802
J Proteome Res. 2010 May 7;9(5):2377-89
pubmed: 20355720
J Gastroenterol Hepatol. 2008 Sep;23(9):1339-48
pubmed: 18853993
Cell Death Dis. 2020 Nov 11;11(11):966
pubmed: 33177505
Methods Mol Med. 2007;137:1-16
pubmed: 18085218
Gastroenterology. 2015 Aug;149(2):481-92.e7
pubmed: 25917787
Nat Rev Gastroenterol Hepatol. 2013 Jun;10(6):362-70
pubmed: 23507798
J Proteome Res. 2010 Nov 5;9(11):5929-42
pubmed: 20815342
Gut. 2021 May;70(5):915-927
pubmed: 32873697
J Proteome Res. 2014 Dec 5;13(12):5362-75
pubmed: 25160714
Mol Omics. 2021 Feb 1;17(1):29-42
pubmed: 33034323
J Proteomics. 2013 Jun 24;85:12-27
pubmed: 23624238
Clin Sci (Lond). 2008 May;114(10):611-24
pubmed: 18399797
J Gastroenterol Hepatol. 2008 Mar;23 Suppl 1:S42-5
pubmed: 18336662