3D Finite Element Model of Human Ear with 3-Chamber Spiral Cochlea for Blast Wave Transmission from the Ear Canal to Cochlea.
Blast overpressure
Cochlea
Ear
Finite element modeling
Journal
Annals of biomedical engineering
ISSN: 1573-9686
Titre abrégé: Ann Biomed Eng
Pays: United States
ID NLM: 0361512
Informations de publication
Date de publication:
May 2023
May 2023
Historique:
received:
24
11
2022
accepted:
29
03
2023
medline:
25
4
2023
pubmed:
11
4
2023
entrez:
10
4
2023
Statut:
ppublish
Résumé
Blast-induced auditory trauma is a common injury in military service members and veterans that leads to hearing loss. While the inner ear response to blast exposure is difficult to characterize experimentally, computational models have advanced to predict blast wave transmission from the ear canal to the cochlea; however, published models have either straight or spiral cochlea with fluid-filled two chambers. In this paper, we report the recently developed 3D finite element (FE) model of the human ear mimicking the anatomical structure of the 3-chambered cochlea. The model consists of the ear canal, middle ear, and two and a half turns of the cochlea with three chambers separated by the Reissner's membrane (RM) and the basilar membrane (BM). The blast overpressure measured from human temporal bone experiments was applied at the ear canal entrance and the Fluent/Mechanical coupled fluid-structure interaction analysis was conducted in ANSYS software. The FE model-derived results include the pressure in the canal near the tympanic membrane (TM) and the intracochlear pressure at scala vestibuli, the TM displacement, and the stapes footplate (SFP) displacement, which were compared with experimentally measured data in human temporal bones. The validated model was used to predict the biomechanical response of the ear to blast overpressure: distributions of the maximum strain and stress within the TM, the BM displacement variation from the base to apex, and the energy flux or total energy entering the cochlea. The comparison of intracochlear pressure and BM displacement with those from the FE model of 2-chambered cochlea indicated that the 3-chamber cochlea model with the RM and scala media chamber improved our understanding of cochlea mechanics. This most comprehensive FE model of the human ear has shown its capability to predict the middle ear and cochlea responses to blast overpressure which will advance our understanding of auditory blast injury.
Identifiants
pubmed: 37036617
doi: 10.1007/s10439-023-03200-6
pii: 10.1007/s10439-023-03200-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1106-1118Subventions
Organisme : U.S. Department of Defense
ID : W81XWH-14-1-0228
Informations de copyright
© 2023. The Author(s) under exclusive licence to Biomedical Engineering Society.
Références
Bien, A. G., S. Jiang, and R. Z. Gan. Real-time measurement of stapes motion and intracochlear pressure during blast exposure. Hear. Res. 429:1–11, 2023.
doi: 10.1016/j.heares.2023.108702
Böhnke, F., and W. Arnold. 3D-Finite element model of the human cochlea including fluid-structure couplings. ORL. 61:305–310, 1999.
doi: 10.1159/000027688
pubmed: 10529652
Brown, M. A., J. J. Bradshaw, and R. Z. Gan. Three-dimensional finite element modeling of blast wave transmission from the external ear to a spiral cochlea. J. Biomech. Eng. 144:014503, 2022.
doi: 10.1115/1.4051925
pubmed: 34318317
Brown, M. A., X. D. Ji, and R. Z. Gan. 3D Finite element modeling of blast wave transmission from the external ear to cochlea. Ann. Biomed. Eng. 49:757–768, 2021.
doi: 10.1007/s10439-020-02612-y
pubmed: 32926269
Cheng, T., C. Dai, and R. Z. Gan. Viscoelastic properties of human tympanic membrane. Ann. Biomed. Eng. 35:305–314, 2007.
doi: 10.1007/s10439-006-9227-0
pubmed: 17160465
Cooper, N. P., and W. S. Rhode. Nonlinear mechanics at the apex of the guinea-pig cochlea. Hear. Res. 82:225–243, 1995.
doi: 10.1016/0378-5955(94)00180-X
pubmed: 7775288
De Paolis, A., M. Bikson, J. T. Nelson, J. A. de Ru, M. Packer, and L. Cardoso. Analytical and numerical modeling of the hearing system: advances towards the assessment of hearing damage. Hear. Res. 349:111–128, 2017.
doi: 10.1016/j.heares.2017.01.015
pubmed: 28161584
pmcid: 7000179
Dewey, J. M. The air velocity in blast waves from t.n.t. explosions. Proc. R. Soc. Lond. A. 279:366–385, 1964.
doi: 10.1098/rspa.1964.0110
Elliott, S. J., G. Ni, B. R. Mace, and B. Lineton. A wave finite element analysis of the passive cochlea. J. Acoust. Soc. Am. 133:1535–1545, 2013.
doi: 10.1121/1.4790350
pubmed: 23464024
Gan, R. Z., B. Feng, and Q. Sun. Three-dimensional finite element modeling of human ear for sound transmission. Ann. Biomed. Eng. 32:847–859, 2004.
doi: 10.1023/B:ABME.0000030260.22737.53
pubmed: 15255215
Gan, R. Z., and S. Jiang. Surface motion changes of tympanic membrane damaged by blast waves. J. Biomech. Eng. 141:091009, 2019.
doi: 10.1115/1.4044052
pubmed: 31215624
Gan, R. Z., D. Nakmali, X. D. Ji, K. Leckness, and Z. Yokell. Mechanical damage of tympanic membrane in relation to impulse pressure waveform—a study in chinchillas. Hear. Res. 340:25–34, 2016.
doi: 10.1016/j.heares.2016.01.004
pubmed: 26807796
pmcid: 4958043
Gan, R. Z., B. P. Reeves, and X. Wang. Modeling of sound transmission from ear canal to cochlea. Ann. Biomed. Eng. 35:2180–2195, 2007.
doi: 10.1007/s10439-007-9366-y
pubmed: 17882549
Gan, R. Z., Q. Sun, B. Feng, and M. W. Wood. Acoustic–structural coupled finite element analysis for sound transmission in human ear—pressure distributions. Med. Eng. Phys. 28:395–404, 2006.
doi: 10.1016/j.medengphy.2005.07.018
pubmed: 16122964
Greene, N. T., M. A. Alhussaini, J. R. Easter, T. F. Argo, T. Walilko, and D. J. Tollin. Intracochlear pressure measurements during acoustic shock wave exposure. Hear. Res. 365:149–164, 2018.
doi: 10.1016/j.heares.2018.05.014
pubmed: 29843947
pmcid: 6901182
Herrmann, G., and H. Liebowitz. Chapter 10 - Mechanics of Bone Fracture. In: Fracture of Nonmetals and Composites, edited by H. Liebowitz. Academic Press, 1972, pp. 771–840. https://doi.org/10.1016/B978-0-12-449707-8.50014-2
Hickman, T. T., C. Smalt, J. Bobrow, T. Quatieri, and M. C. Liberman. Blast-induced cochlear synaptopathy in chinchillas. Sci. Rep. 8:10740, 2018.
doi: 10.1038/s41598-018-28924-7
pubmed: 30013117
pmcid: 6048130
Jiang, S., C. Dai, and R. Z. Gan. Dual-laser measurement of human stapes footplate motion under blast exposure. Hear. Res. 403:108177, 2021.
doi: 10.1016/j.heares.2021.108177
pubmed: 33524791
Jiang, S., K. Smith, and R. Z. Gan. Dual-laser measurement and finite element modeling of human tympanic membrane motion under blast exposure. Hear. Res. 378:43–52, 2019.
doi: 10.1016/j.heares.2018.12.003
pubmed: 30630647
Kim, S. H., K. X. Kim, N. N. Raveendran, T. Wu, S. R. Pondugula, and D. C. Marcus. Regulation of ENaC-mediated sodium transport by glucocorticoids in Reissner’s membrane epithelium. Am. J. Physiol. Cell Physiol. 296:14, 2009.
doi: 10.1152/ajpcell.00338.2008
Kirikae, I. The Structure and Function of the Middle Ear. Tokyo: University of Tokyo Press, 1960.
Leckness, K., D. Nakmali, and R. Z. Gan. Computational modeling of blast wave transmission through human ear. Mil. Med. 183:262–268, 2018.
doi: 10.1093/milmed/usx226
pubmed: 29635609
Lee, J. H., and D. C. Marcus. Endolymphatic sodium homeostasis by REISSNER’s membrane. Neuroscience. 119:3–8, 2003.
doi: 10.1016/S0306-4522(03)00104-0
pubmed: 12763062
Liu, W., F. Atturo, R. Aldaya, P. Santi, S. Cureoglu, S. Obwegeser, R. Glueckert, K. Pfaller, A. Schrott-Fischer, and H. Rask-Andersen. Macromolecular organization and fine structure of the human basilar membrane—RELEVANCE for cochlear implantation. Cell Tissue Res. 360:245–262, 2015.
doi: 10.1007/s00441-014-2098-z
pubmed: 25663274
pmcid: 4412841
Olson, E. S., H. Duifhuis, and C. R. Steele. Von Békésy and cochlear mechanics. Hear. Res. 293:31–43, 2012.
doi: 10.1016/j.heares.2012.04.017
pubmed: 22633943
pmcid: 3572775
Paik, C. B., M. Pei, and J. S. Oghalai. Review of blast noise and the auditory system. Hear. Res. 2022. https://doi.org/10.1016/j.heares.2022.108459 .
doi: 10.1016/j.heares.2022.108459
pubmed: 35181171
Price, G. R. Validation of the auditory hazard assessment algorithm for the human with impulse noise data. J. Acoust. Soc. Am. 122:2786, 2007.
doi: 10.1121/1.2785810
pubmed: 18189569
Price, G. R. Predicting mechanical damage to the organ of Corti. Hear. Res. 226:5–13, 2007.
doi: 10.1016/j.heares.2006.08.005
pubmed: 16978813
Reichenbach, T., A. Stefanovic, F. Nin, and A. J. Hudspeth. Waves on Reissner’s membrane: a mechanism for the propagation of otoacoustic emissions from the cochlea. Cell Rep. 1:374–384, 2012.
doi: 10.1016/j.celrep.2012.02.013
pubmed: 22580949
pmcid: 3348656
Sun, Q., R. Z. Gan, K.-H. Chang, and K. J. Dormer. Computer-integrated finite element modeling of human middle ear. Biomech. Model. Mechanobiol. 1:109–122, 2002.
doi: 10.1007/s10237-002-0014-z
pubmed: 14595544
Yu, Y.-C., T.-C. Wang, and T.-C. Shih. A comprehensive finite-element human ear model to estimate noise-induced hearing loss associated with occupational noise exposure. Comput. Methods Programs Biomed. 226:107179, 2022.
doi: 10.1016/j.cmpb.2022.107179
pubmed: 36306646
Zhang, X., and R. Z. Gan. A Comprehensive model of human ear for analysis of implantable hearing devices. IEEE Trans. Biomed. Eng. 58:3024–3027, 2011.
doi: 10.1109/TBME.2011.2159714
pubmed: 21708496
Zhang, X., and R. Z. Gan. Finite element modeling of energy absorbance in normal and disordered human ears. Hear. Res. 301:146–155, 2013.
doi: 10.1016/j.heares.2012.12.005
pubmed: 23274858