Detrimental effects of vitrification on integrin genes (α9 and β1) and in vitro fertilization in mouse oocytes.
Cryotop
In Vitro Maturation (IVM)
In Vitro fertilization (IVF)
Vitrification
α9 integrin
β1 integrin
Journal
Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234
Informations de publication
Date de publication:
Jun 2023
Jun 2023
Historique:
received:
29
11
2022
accepted:
08
03
2023
medline:
26
5
2023
pubmed:
12
4
2023
entrez:
11
4
2023
Statut:
ppublish
Résumé
Integrins are known as key molecules that importantly involve in fertilization. This study aimed to evaluate effects of vitrification on fertilization rate and expression of integrin genes, α9 and β1, on mice oocytes in GV and MІІ stages. From the ovarian tissue and fallopian tube of NMRI mice, germinal vesicle (GV, n = 200) and metaphase II (MII, n = 200) oocytes were obtained. Then, oocytes were distributed into 4 groups including non-vitrified GV, non-vitrified MII, vitrified GV, and vitrified MII. Cryotop method was used for vitrification and oocytes (for 4 weeks) were kept in liquid nitrogen. After that, by using an inverted microscope, the rate of survived oocytes was assessed. Also, in vitro fertilization (IVF) for oocytes, obtained from in vitro maturated MII and mice ovaries (ovulated MII), was done to assess embryos at differenced stages (2-cells, morula, and hatched). Finally, RT-qPCR was performed to investigate the mRNA expression of integrin genes (α9 and β1). After vitrification, the rate of survived oocytes, 68.65%for GV and 65.07% % for MII, did not show a remarkable difference related to non-vitrified groups, while the fertilization rate in vitrified groups remarkably decrease compared to non-vitrified groups (p < 0.05). Also, the expression of α9 and β1 genes was significantly altered in vitrified groups when compared to non-vitrified groups (p < 0.05). There was no significant difference in embryo developmental rates for non-vitrified and vitrified groups. Cryotop method for vitrification caused an alternation in oocyte quality by reducing fertilization rate and integrin gene expression.
Identifiants
pubmed: 37039996
doi: 10.1007/s11033-023-08377-6
pii: 10.1007/s11033-023-08377-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4823-4829Subventions
Organisme : Qazvin University of Medical Sciences
ID : Qazvin University of Medical Sciences
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Fisch B, Abir R (2018) Female fertility preservation: past, present and future. Reprod 156(1):F11–F27. https://doi.org/10.1530/REP-17-0483
doi: 10.1530/REP-17-0483
Shandley LM, McKenzie LJ (2019) Recent advances in Fertility Preservation and Counseling for Reproductive-Aged women with colorectal Cancer: a systematic review. Dis Colon Rectum 62(6):762–771. https://doi.org/10.1097/DCR.0000000000001351
doi: 10.1097/DCR.0000000000001351
pubmed: 30730458
Cobo A, García-Velasco JA, Remohí J, Pellicer A (2021) Oocyte vitrification for fertility preservation for both medical and nonmedical reasons. Fertil and Steril 115(5):1091–1101. https://doi.org/10.1016/j.fertnstert.2021.02.006
doi: 10.1016/j.fertnstert.2021.02.006
Telfer EE, Andersen CY (2021) In vitro growth and maturation of primordial follicles and immature oocytes. Fertil and Steril 115(5):1116–1125. https://doi.org/10.1016/j.fertnstert.2021.03.004
doi: 10.1016/j.fertnstert.2021.03.004
Lockwood GM (2011) Social egg freezing: the prospect of reproductive ‘immortality’or a dangerous delusion? Reprod Biomed Online 23(3):334–340
doi: 10.1016/j.rbmo.2011.05.010
pubmed: 21775211
Mirzaeian L, Rafipour H, Hashemi S, Amanpour S (2020) Cryopreservation Options to Preserve Fertility in Female Cancer Patients: Available Clinical Practice and Investigational Strategies from the Oncology Guidelines Point of View. Basic & Clinical Cancer Research 12(1):42–53
Abedpour N, Salehnia M, Ghorbanmehr N (2018) The Effects of Lysophosphatidic Acid on the incidence of cell death in cultured vitrified and non-vitrified mouse ovarian tissue: separation of necrosis and apoptosis Border. Cell J 20(3):403–411. https://doi.org/10.22074/cellj.2018.5180
doi: 10.22074/cellj.2018.5180
pubmed: 29845795
pmcid: 6005000
Abedpour N, Salehnia M, Ghorbanmehr N (2018) Effect of lysophosphatidic acid on the follicular development and the expression of lysophosphatidic acid receptor genes during in vitro culture of mouse ovary. Vet Res Forum 9(1):59–66
pubmed: 29719665
pmcid: 5913562
Abedpour N, Salehnia M, Ghorbanmehr N (2022) Lysophosphatidic acid supports the development of vitrified ovarian follicles by decreasing the incidence of cell death: an experimental study. Int J Reprod BioMed 23(4):273–288. https://doi.org/10.18502/ijrm.v20i4.10899
doi: 10.18502/ijrm.v20i4.10899
Abedpour N, Javanmard MZ, Karimipour M, Farjah GH (2022) Chlorogenic acid improves functional potential of follicles in mouse whole ovarian tissues in vitro. Mol Biol Rep. https://doi.org/10.21203/rs.3.rs-1553106/v1
doi: 10.21203/rs.3.rs-1553106/v1
pubmed: 36097112
Khalili MA, Maione M, Palmerini MG, Bianchi S, Macchiarelli G, Nottola SA (2012) Ultrastructure of human mature oocytes after vitrification. Eur J Histochem 56(3):38. https://doi.org/10.4081/ejh.2012.e38
doi: 10.4081/ejh.2012.e38
Chang CC, Shapiro DB, Nagy ZP (2022) The effects of vitrification on oocyte quality. Biol Reprod 22;106(2):316–327. https://doi.org/10.1093/biolre/ioab239
Anderson RA, Telfer EE (2018) Being a good egg in the 21st century. Br Med Bull 1;127(1):83–89. https://doi.org/10.1093/bmb/ldy023
Da Luz CM, Caetano MA, Berteli TS, Vireque AA, Navarro PA (2022) The impact of oocyte vitrification on offspring: a systematic review. Reprod Sci. https://doi.org/10.1007/s43032-022-00868-4
doi: 10.1007/s43032-022-00868-4
pubmed: 35099778
Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8(5):215. https://doi.org/10.1186/gb-2007-8-5-215
doi: 10.1186/gb-2007-8-5-215
pubmed: 17543136
pmcid: 1929136
Merc V, Frolikova M, Komrskova K (2021) Role of integrins in sperm activation and fertilization. Int J Mol Sci 30(21):11809. https://doi.org/10.3390/ijms222111809
doi: 10.3390/ijms222111809
Vjugina U, Zhu X, Oh E, Bracero NJ, Evans JP (2009) Reduction of mouse egg surface integrin alpha9 subunit (ITGA9) reduces the egg’s ability to support sperm-egg binding and fusion. Biol Reprod 80(4):833–841. https://doi.org/10.1095/biolreprod.108.075275
doi: 10.1095/biolreprod.108.075275
pubmed: 19129508
pmcid: 2804834
Evans JP, Kopf GS, Schultz RM (1997) Characterization of the binding of recombinant mouse sperm fertilin beta subunit to mouse eggs: evidence for adhesive activity via an egg beta1 integrin-mediated interaction. Dev Biol 187(1):79–93. https://doi.org/10.1006/dbio.1997.8611
doi: 10.1006/dbio.1997.8611
pubmed: 9224676
Velho A, Wang H, Koenig L, Grant KE, Menezes ES, Kaya A et al (2019) Expression dynamics of integrin subunit Beta 5 in bovine gametes and embryos imply functions in male fertility and early embryonic development. Andrologia 51(7):e13305
doi: 10.1111/and.13305
pubmed: 31090238
Humphries MJ (2000) Integrin cell adhesion receptors and the concept of agonism. Trends Pharmacol Sci 21(1):29–32. https://doi.org/10.1016/s0165-6147(99)01410-8
doi: 10.1016/s0165-6147(99)01410-8
pubmed: 10637653
Hancock JT, Desikan R, Neill SJ (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29(2):345–350. https://doi.org/10.1042/0300-5127:0290345
doi: 10.1042/0300-5127:0290345
pubmed: 11356180
Salehnia M, Abbasian Moghadam E, Rezazadeh Velojerdi M (2002) Ultrastructure of follicles after vitrification of mouse ovarian tissue. Fertil Steril 78(3):644–645. https://doi.org/10.1016/s0015-0282(02)03287-9
doi: 10.1016/s0015-0282(02)03287-9
pubmed: 12215351
Seghinsara AM, Shoorei H, Hassanzadeh Taheri MM, Khaki A, Shokoohi M, Tahmasebi M, Khaki AA et al (2019) Panax ginseng extract improves follicular development after mouse preantral follicle 3D culture. Cell J 21(2):210. https://doi.org/10.22074/cellj.2019.5733
doi: 10.22074/cellj.2019.5733
Shoorei H, Banimohammad M, Kebria MM, Afshar M, Taheri MMH, Shokoohi M, Farashah MS et al (2019) Hesperidin improves the follicular development in 3D culture of isolated preantral ovarian follicles of mice. Exp Biol Med (Maywood) 244(5):352–361. https://doi.org/10.1177/1535370219831615
doi: 10.1177/1535370219831615
pubmed: 30781997
Larman MG, Minasi MG, Rienzi L, Gardner DK (2007) Maintenance of the meiotic spindle during vitrification in human and mouse oocytes. Reprod Biomed Online 15(6):692–700. https://doi.org/10.1016/s1472-6483(10)60537-8
doi: 10.1016/s1472-6483(10)60537-8
pubmed: 18062868
Bulgarelli DL, Vireque AA, Pitangui-Molina CP, de Silva-de-Sá MF, Silva ACJ (2017) Reduced competence of immature and mature oocytes vitrified by Cryotop method: assessment by in vitro fertilization and parthenogenetic activation in a bovine model. Zygote 25(2):222–230. https://doi.org/10.1017/S0967199416000381
doi: 10.1017/S0967199416000381
pubmed: 28069092
Gu RH, Li ZC, Lang JW et al (2020) Vitrification of in vitro-matured Oocytes: Effects of meiotic spindle morphology on clinical outcome. Reprod Dev Med 4(01):18–24. https://doi.org/10.4103/2096-2924.281854
doi: 10.4103/2096-2924.281854
Li YZ, Li N, Yan XH, Zhou WD, Zhou YL, Chen QH, Wu RF (2018) Vitrification versus slow freezing of human oocytes: Effects on ultrastructure and developmental potential. Reprod Dev Med 2(03):129–136
doi: 10.4103/2096-2924.248491
Gutierrez-Castillo EJ (2018) Effect of vitrification on epigenetic modifications and the meiotic spindle of bovine oocytes. Louisiana State University and Agricultural & Mechanical College
Sirard MA, Richard F, Mayes M (1998) Controlling meiotic resumption in bovine oocytes: a review. Theriogenology 15;49(2):483 – 97. https://doi.org/10.1016/s0093-691x(97)00420-2
Kubelka M, Motlík J, Schultz RM (2000) A Pavlok Butyrolactone I reversibly inhibits meiotic maturation of bovine oocytes,without influencing chromosome condensation activity. Biol Reprod 62(2):292–302. https://doi.org/10.1095/biolreprod62.2.292.28
doi: 10.1095/biolreprod62.2.292.28
pubmed: 10642565
Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Gonçalves PB, Wolf E (2001) Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod 64(3):904–909. https://doi.org/10.1095/biolreprod64.3.904
doi: 10.1095/biolreprod64.3.904
pubmed: 11207207
López A, Betancourt M, Casillas F (2020) Vitrification and its impact on oocyte structures. Rev. https://doi.org/10.33552/ABEB.2020.03.000568
doi: 10.33552/ABEB.2020.03.000568
Chen L, Jiang JC, Dai XX, Fan HY (2020) Function and molecular mechanism of mitogen-activated protein kinase (MAPK) in regulating oocyte meiotic maturation and ovulation. Sheng li xue bao 72(1):48–62
pubmed: 32099983
Zhao Z, Yang L, Zhang D, Zheng Z, Li N, Li Q, Cui M (2020) Elevation of MPF and MAPK gene expression, GSH content and mitochondrial distribution quality induced by melatonin promotes porcine oocyte maturation and development in vitro. PeerJ 8:9913. https://doi.org/10.7717/peerj.9913
doi: 10.7717/peerj.9913
Wu C, Rui R, Dai J, Zhang C, Ju S, Xie B, Lu X, Zheng X (2006) Effects of cryopreservation on the developmental competence, ultrastructure and cytoskeletal structure of porcine oocytes. Mol Reprod Dev 73(11):1454–1462. https://doi.org/10.1002/mrd.20579
doi: 10.1002/mrd.20579
pubmed: 16894553
Cha SK, Kim BY, Kim MK, Kim YS, Lee WS, Yoon TK, Lee D (2011) Effects of various combinations of cryoprotectants and cooling speed on the survival and further development of mouse oocytes after vitrification. Clin Exp Reprod Med 38(1):24–30. https://doi.org/10.5653/cerm.2011.38.1.24
doi: 10.5653/cerm.2011.38.1.24
pubmed: 22384414
pmcid: 3283046
Galeati G, Spinaci M, Vallorani C, Bucci D, Porcu E, Tamanini C (2011) Pig oocyte vitrification by cryotop method: effects on viability, spindle and chromosome configuration and in vitro fertilization. Anim Reprod Sci 127(1–2):43–49. https://doi.org/10.1016/j.anireprosci.2011.07.010
doi: 10.1016/j.anireprosci.2011.07.010
pubmed: 21820826
Wang Y, Zhang M, Chen ZJ, Du Y (2018) Resveratrol promotes the embryonic development of vitrified mouse oocytes after in vitro fertilization. In Vitro Cell Dev Biol Anim 54(6):430–438. https://doi.org/10.1007/s11626-018-0262-6
doi: 10.1007/s11626-018-0262-6
pubmed: 29845451
Arcarons N, Morató R, Spricigo JF, Ferraz MA, Mogas T (2015) Spindle configuration and developmental competence of in vitro-matured bovine oocytes exposed to NaCl or sucrose prior to Cryotop vitrification. Reprod Fertil Dev. https://doi.org/10.1071/RD14516
doi: 10.1071/RD14516
pubmed: 25897945
Antosik P, Kempisty B, Jackowska M, Bukowska D, Lianeri M, Brussow KP, Wozna M (2010) The morphology of porcine oocytes is associated with zona pellucida glycoprotein 3 and integrin beta 2 protein levels. Vet med 55(4):154–162. https://doi.org/10.17221/38/2010-VETMED
doi: 10.17221/38/2010-VETMED
Cho C, Bunch DO, Faure JE, Goulding EH, Eddy EM, Primakoff P, Myles DG (1998) Fertilization defects in sperm from mice lacking fertilin beta. Sci 281(5384):1857–1859. https://doi.org/10.1126/science.281.5384.1857
doi: 10.1126/science.281.5384.1857
Primakoff P, Hyatt H, Tredick-Kline J (1987) Identification and purification of a sperm surface protein with a potential role in sperm-egg membrane fusion. J Cell Biol 104(1):141–149. https://doi.org/10.1083/jcb.104.1.141
doi: 10.1083/jcb.104.1.141
pubmed: 3793758
Sengoku K, Takuma N, Miyamoto T, Horikawa M, Ishikawa M (2004) Integrins are not involved in the process of human sperm-oolemmal fusion. Hum Reprod 19(3):639–644. https://doi.org/10.1093/humrep/deh095
doi: 10.1093/humrep/deh095
pubmed: 14998963
Ziyyat A, Rubinstein E, Monier-Gavelle F, Barraud V, Kulski O, Prenant M et al (2006) CD9 controls the formation of clusters that contain tetraspanins and the integrin alpha 6 beta 1, which are involved in human and mouse gamete fusion. J Cell Sci 119(3):416–424
doi: 10.1242/jcs.02730
pubmed: 16418227