Microchip encapsulation and microRNA-7 overexpression of trabecular meshwork mesenchymal stem/stromal cells improve motor function after spinal cord injury.
contusion
differentiation
hydrogel
miR-7
microfluidic chip
spinal cord injury
trabecular meshwork mesenchymal stem/stromal cells
Journal
Journal of biomedical materials research. Part A
ISSN: 1552-4965
Titre abrégé: J Biomed Mater Res A
Pays: United States
ID NLM: 101234237
Informations de publication
Date de publication:
09 2023
09 2023
Historique:
revised:
24
03
2023
received:
02
10
2022
accepted:
04
04
2023
medline:
21
7
2023
pubmed:
13
4
2023
entrez:
12
4
2023
Statut:
ppublish
Résumé
Manipulation of stem cells and microencapsulation through microfluidic chips has shown more promising results in treating complex conditions, such as spinal cord injury (SCI), than traditional treatments. This study aimed to investigate the potency of neural differentiation and its therapeutic role in SCI animal model of trabecular meshwork mesenchymal stem/stromal cells (TMMSCs) via miR-7 overexpression and microchip-encapsulated. TMMSCs are transduced with miR-7 via a lentiviral vector (TMMSCs-miR-7[+]) and encapsulated in alginate-reduced graphene oxide (alginate-rGO) hydrogel via a microfluidic chip. Neuronal differentiation of transduced cells in hydrogel (3D) and tissue cultures plate (2D) was assessed by expressing specific mRNAs and proteins. Further evaluation is being carried out through 3D and 2D TMMSCs-miR-7(+ and -) transplantation into the rat contusion SCI model. TMMSCs-miR-7(+) encapsulated in the microfluidic chip (miR-7-3D) increased nestin, β-tubulin III, and MAP-2 expression compared with 2D culture. Moreover, miR-7-3D could improve locomotor behavior in contusion SCI rats, decrease cavity size, and increase myelination. Our results revealed that miR-7 and alginate-rGO hydrogel were involved in the neuronal differentiation of TMMSCs in a time-dependent manner. In addition, the microfluidic-encapsulated miR-7 overexpression TMMSCs represented a better survival and integration of the transplanted cells and the repair of SCI. Collectively, the combination of miR-7 overexpression and encapsulation of TMMSCs in hydrogels may represent a promising new treatment for SCI.
Substances chimiques
graphene oxide
0
Hydrogels
0
MicroRNAs
0
MIRN7 microRNA, human
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1482-1494Informations de copyright
© 2023 Wiley Periodicals LLC.
Références
Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017;3(1):1-21.
James SL, Theadom A, Ellenbogen RG, et al. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the global burden of disease study 2016. The Lancet Neurology. 2019;18(1):56-87.
Fehlings MG, Tetreault LA, Wilson JR, et al. A Clinical Practice Guideline for the Management of Acute Spinal Cord Injury: Introduction, Rationale, and Scope. SAGE Publications Sage CA; 2017.
Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regenerative Med. 2019;4(1):1-15.
Jamali S, Mostafavi H, Barati G, Eskandari M, Nadri S. Differentiation of mesenchymal stem cells-derived trabecular meshwork into dopaminergic neuron-like cells on nanofibrous scaffolds. Biologicals. 2017;50:49-54.
Nadri S, Barati G, Mostafavi H, Esmaeilzadeh A, Enderami SE. Differentiation of conjunctiva mesenchymal stem cells into secreting islet beta cells on plasma treated electrospun nanofibrous scaffold. Artif Cell Nanomed Biotechnol. 2018;46(sup1):178-187.
Gao X, Li X, Qian C, et al. MiR-21 functions oppositely in proliferation and differentiation of neural stem/precursor cells via regulating AKT and GSK-3Î2. Cell Mol Biol. 2016;62(12):144-149.
Li W, Shan BQ, Zhao HY, et al. MiR-130a-3p regulates neural stem cell differentiation in vitro by targeting Acsl4. J Cell Mol Med. 2022;26(9):2717-2727.
Kaundal U, Ramachandran R, Arora A, et al. Mesenchymal stromal cells mediate clinically unpromising but Favourable immune responses in kidney transplant patients. Stem Cell Int. 2022;2022:1-17.
Sanooghi D, Lotfi A, Bagher Z, et al. Large-scale analysis of MicroRNA expression in motor neuron-like cells derived from human umbilical cord blood mesenchymal stem cells. Sci Rep. 2022;12(1):1-17.
Chang S-J, Weng S-L, Hsieh J-Y, Wang T-Y, Chang MD-T, Wang H-W. MicroRNA-34a modulates genes involved in cellular motility and oxidative phosphorylation in neural precursors derived from human umbilical cord mesenchymal stem cells. BMC Med Genomics. 2011;4(1):1-8.
Greco SJ, Rameshwar P. MicroRNAs regulate synthesis of the neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells. Proc Natl Acad sci. 2007;104(39):15484-15489.
Han R, Kan Q, Sun Y, et al. MiR-9 promotes the neural differentiation of mouse bone marrow mesenchymal stem cells via targeting zinc finger protein 521. Neurosci Lett. 2012;515(2):147-152.
Jedari B, Rahmani A, Naderi M, Nadri S. MicroRNA-7 promotes neural differentiation of trabecular meshwork mesenchymal stem cell on nanofibrous scaffold. J Cell Biochem. 2020;121(4):2818-2827.
Ludwig N, Leidinger P, Becker K, et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016;44(8):3865-3877.
Chen H, Shalom-Feuerstein R, Riley J, et al. miR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro. Biochem Biophys Res Commun. 2010;394(4):921-927.
Bak M, Silahtaroglu A, Møller M, et al. MicroRNA expression in the adult mouse central nervous system. RNA. 2008;14(3):432-444.
Cao B, Wang T, Qu Q, Kang T, Yang Q. Long noncoding RNA SNHG1 promotes neuroinflammation in Parkinson's disease via regulating miR-7/NLRP3 pathway. Neuroscience. 2018;388:118-127.
Nielsen JA, Lau P, Maric D, Barker JL, Hudson LD. Integrating microRNA and mRNA expression profiles of neuronal progenitors to identify regulatory networks underlying the onset of cortical neurogenesis. BMC Neurosci. 2009;10(1):1-17.
Sortwell CE, Pitzer MR, Collier TJ. Time course of apoptotic cell death within mesencephalic cell suspension grafts: implications for improving grafted dopamine neuron survival. Exp Neurol. 2000;165(2):268-277.
Anderson AJ, Haus DL, Hooshmand MJ, Perez H, Sontag CJ, Cummings BJ. Achieving stable human stem cell engraftment and survival in the CNS: is the future of regenerative medicine immunodeficient? Regen Med. 2011;6(3):367-406.
Caron I, Rossi F, Papa S, et al. A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury. Biomaterials. 2016;75:135-147.
Vismara I, Papa S, Rossi F, Forloni G, Veglianese P. Current options for cell therapy in spinal cord injury. Trends Mol Med. 2017;23(9):831-849.
Sakai S, Mu C, Kawabata K, Hashimoto I, Kawakami K. Biocompatibility of subsieve-size capsules versus conventional-size microcapsules. J Biomed Mater Res Part A: An Off J Soc Biomater Japanese Soc Biomater Australian Soc Biomater Korean Soc Biomater. 2006;78(2):394-398.
Kang A, Park J, Ju J, Jeong GS, Lee S-H. Cell encapsulation via microtechnologies. Biomaterials. 2014;35(9):2651-2663.
Park D, Mun C, Kang E, No D, Ju J, Lee S. One-stop microfiber spinning and fabrication of a fibrous cell-encapsulated scaffold on a single microfluidic platform. Biofabrication. 2014;6(2):024108.
Nooranidoost M, Kumar R. Geometry effects of axisymmetric flow-focusing microchannels for single cell encapsulation. Materials. 2019;12(17):2811.
Sahoo DR, Biswal T. Alginate and its application to tissue engineering. SN Appl Sci. 2021;3(1):1-19.
Pereira AT, Henriques PC, Costa PC, Martins MCL, Magalhães FD, Gonçalves IC. Graphene oxide-reinforced poly (2-hydroxyethyl methacrylate) hydrogels with extreme stiffness and high-strength. Compos Sci Technol. 2019;184:107819.
Nadri S, Yazdani S, Arefian E, et al. Mesenchymal stem cells from trabecular meshwork become photoreceptor-like cells on amniotic membrane. Neurosci Lett. 2013;541:43-48.
Basso DM, Beattie MS, Bresnahan JC. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol. 1996;139(2):244-256.
Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12(1):1-21.
Llewellyn B. Nuclear staining with alum hematoxylin. Biotech Histochem. 2009;84(4):159-177.
Noristani HN, Lonjon N, Cardoso M, et al. Correlation of in vivo and ex vivo1H-MRI with histology in two severities of mouse spinal cord injury. Front Neuroanatomy. 2015;9:24.
Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol. 2014;114:25-57.
Madhusudanan P, Raju G, Shankarappa S. Hydrogel systems and their role in neural tissue engineering. Journal of the Royal Society Interface. 2020;17(162):20190505.
Tobias CA, Han SS, Shumsky JS, et al. Alginate encapsulated BDNF-producing fibroblast grafts permit recovery of function after spinal cord injury in the absence of immune suppression. J Neurotrauma. 2005;22(1):138-156.
Barati G, Nadri S, Hajian R, et al. Differentiation of microfluidic-encapsulated trabecular meshwork mesenchymal stem cells into insulin producing cells and their impact on diabetic rats. J Cell Physiol. 2019;234(5):6801-6809.
Shao F, Yu L, Zhang Y, et al. Microfluidic encapsulation of single cells by alginate microgels using a trigger-gellified strategy. Front Bioeng Biotechnol. 2020;8:583065
Liu S, Sandner B, Schackel T, et al. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury. Acta Biomater. 2017;60:167-180.
Bozza A, Coates EE, Incitti T, et al. Neural differentiation of pluripotent cells in 3D alginate-based cultures. Biomaterials. 2014;35(16):4636-4645.
Ciriza J, Saenz del Burgo L, Gurruchaga H, et al. Graphene oxide enhances alginate encapsulated cells viability and functionality while not affecting the foreign body response. Drug Deliv. 2018;25(1):1147-1160.
Marrella A, Lagazzo A, Barberis F, Catelani T, Quarto R, Scaglione S. Enhanced mechanical performances and bioactivity of cell laden-graphene oxide/alginate hydrogels open new scenario for articular tissue engineering applications. Carbon. 2017;115:608-616.
Choe G, Kim S-W, Park J, et al. Anti-oxidant activity reinforced reduced graphene oxide/alginate microgels: mesenchymal stem cell encapsulation and regeneration of infarcted hearts. Biomaterials. 2019;225:119513.
Assunção-Silva RC, Gomes ED, Sousa N, Silva NA, Salgado AJ. Hydrogels and cell based therapies in spinal cord injury regeneration. Stem Cells Int 2015;2015, 2015, 1, 24.
Bian S, Sun T. Tuning the cell fate of neurons and glia by microRNAs. Curr Opin Neurobiol. 2013;23(6):928-934.
Liu J, Githinji J, Mclaughlin B, Wilczek K, Nolta J. Role of miRNAs in neuronal differentiation from human embryonic stem cell-derived neural stem cells. Stem Cell Rev Report. 2012;8(4):1129-1137.
Sun AX, Crabtree GR, Yoo AS. MicroRNAs: regulators of neuronal fate. Curr Opin Cell Biol. 2013;25(2):215-221.
Wu S, Xu R, Duan B, Jiang P. Three-dimensional hyaluronic acid hydrogel-based models for in vitro human iPSC-derived NPC culture and differentiation. J Mater Chem B. 2017;5(21):3870-3878.
Han Y, Bai T, Liu W. Controlled heterogeneous stem cell differentiation on a shape memory hydrogel surface. Sci Rep. 2014;4(1):1-7.
Khosravizadeh Z, Razavi S, Bahramian H, Kazemi M. The beneficial effect of encapsulated human adipose-derived stem cells in alginate hydrogel on neural differentiation. J Biomed Mater Res B Appl Biomater. 2014;102(4):749-755.
Kim J, Sachdev P, Sidhu K. Alginate microcapsule as a 3D platform for the efficient differentiation of human embryonic stem cells to dopamine neurons. Stem Cell Res. 2013;11(3):978-989.
Lu L, Liu X, Yaszemski MJ. Conductive graphene oxide hydrogel composites with functionalized surface for nerve regeneration. FASEB J 2016;30:1300-13015.
Wang L, Song D, Zhang X, et al. Silk-graphene hybrid hydrogels with multiple cues to induce nerve cell behavior. ACS Biomater sci Eng. 2018;5(2):613-622.
Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars). 2011;71(2):281-299.
Oliveri RS, Bello S, Biering-Sørensen F. Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: systematic review with meta-analyses of rat models. Neurobiol Dis. 2014;62:338-353.
Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med. 2010;5(6):933-946.
Jalali Monfared M, Nasirinezhad F, Ebrahimi-Barough S, et al. Transplantation of miR-219 overexpressed human endometrial stem cells encapsulated in fibrin hydrogel in spinal cord injury. J Cell Physiol. 2019;234(10):18887-18896.