Leaf-venation-directed cellular alignment for macroscale cardiac constructs with tissue-like functionalities.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
12 04 2023
12 04 2023
Historique:
received:
24
11
2022
accepted:
28
03
2023
medline:
14
4
2023
entrez:
12
4
2023
pubmed:
13
4
2023
Statut:
epublish
Résumé
Recapitulating the complex structural, mechanical, and electrophysiological properties of native myocardium is crucial to engineering functional cardiac tissues. Here, we report a leaf-venation-directed strategy that enables the compaction and remodeling of cell-hydrogel hybrids into highly aligned and densely packed organizations in predetermined patterns. This strategy contributes to interconnected tubular structures with cell alignment along the hierarchical channels. Compared to randomly-distributed cells, the engineered leaf-venation-directed-cardiac tissues from neonatal rat cardiomyocytes manifest advanced maturation and functionality as evidenced by detectable electrophysiological activity, macroscopically synchronous contractions, and upregulated maturation genes. As a demonstration, human induced pluripotent stem cell-derived leaf-venation-directed-cardiac tissues are engineered with evident structural and functional improvement over time. With the elastic scaffolds, leaf-venation-directed tissues are assembled into 3D centimeter-scale cardiac constructs with programmed mechanical properties, which can be delivered through tubing without affecting cell viability. The present strategy may generate cardiac constructs with multifaceted functionalities to meet clinical demands.
Identifiants
pubmed: 37045852
doi: 10.1038/s41467-023-37716-1
pii: 10.1038/s41467-023-37716-1
pmc: PMC10097867
doi:
Substances chimiques
Hydrogels
0
Types de publication
Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2077Informations de copyright
© 2023. The Author(s).
Références
Circ Res. 2017 Apr 14;120(8):1318-1325
pubmed: 28069694
J Biomed Mater Res A. 2016 Dec;104(12):2945-2953
pubmed: 27449538
Circulation. 2008 Sep 30;118(14 Suppl):S145-52
pubmed: 18824746
Curr Res Physiol. 2022 Jan 25;5:55-62
pubmed: 35128468
Nature. 2018 Apr;556(7700):239-243
pubmed: 29618819
Nat Mater. 2015 Dec;14(12):1262-8
pubmed: 26461445
Nat Protoc. 2009;4(2):155-73
pubmed: 19180087
Nat Commun. 2017 Nov 28;8(1):1825
pubmed: 29184059
Commun Biol. 2018 Nov 21;1:199
pubmed: 30480100
JAMA. 2019 Mar 26;321(12):1186-1187
pubmed: 30912818
Tissue Eng Part C Methods. 2015 May;21(5):467-79
pubmed: 25333967
Acta Biomater. 2012 Aug;8(8):3138-43
pubmed: 22522129
Front Cell Dev Biol. 2022 Mar 11;10:850645
pubmed: 35359438
Biomaterials. 2014 Sep;35(28):8092-102
pubmed: 24965886
Biomaterials. 2017 Apr;124:106-115
pubmed: 28192772
Nat Biomed Eng. 2022 Apr;6(4):327-338
pubmed: 35478227
Physiol Rev. 2004 Apr;84(2):431-88
pubmed: 15044680
Circulation. 1992 Jul;86(1):38-46
pubmed: 1535573
Matrix Biol. 2017 Jul;60-61:110-123
pubmed: 27553509
Acta Biomater. 2017 Jan 15;48:20-40
pubmed: 27826001
Adv Mater. 2022 Jul;34(26):e2200217
pubmed: 35451188
Biomaterials. 2017 May;125:13-22
pubmed: 28222326
Nat Protoc. 2021 May;16(5):2418-2449
pubmed: 33854255
J Biomech Eng. 2014 Feb;136(2):021007
pubmed: 24337452
Adv Biol (Weinh). 2021 Jul;5(7):e2000190
pubmed: 34008910
Nat Biotechnol. 2013 Jan;31(1):54-62
pubmed: 23242162
Sci Adv. 2020 Mar 25;6(13):eaay6994
pubmed: 32284967
Nat Biomed Eng. 2022 Apr;6(4):372-388
pubmed: 35478228
Biomaterials. 2021 Aug;275:120906
pubmed: 34139506
Nat Biomed Eng. 2021 Oct;5(10):1157-1173
pubmed: 34593988
Nat Rev Cardiol. 2022 Feb;19(2):83-99
pubmed: 34453134
Nat Commun. 2011;2:300
pubmed: 21556054
Biomaterials. 2014 Apr;35(12):3819-28
pubmed: 24508078
Sci Adv. 2015 Aug 21;1(7):e1500423
pubmed: 26601234
Nat Biomed Eng. 2018 Dec;2(12):930-941
pubmed: 31015723
Biomaterials. 2014 Aug;35(26):7308-25
pubmed: 24906345
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14043-14048
pubmed: 27872289
Acta Biomater. 2020 Jan 1;101:141-151
pubmed: 31669696
Biochem Biophys Res Commun. 2012 Aug 24;425(2):321-7
pubmed: 22842572
Stem Cell Res. 2016 May;16(3):740-50
pubmed: 27131761
Small. 2020 Jun;16(22):e2000546
pubmed: 32329575
Sci Transl Med. 2016 Nov 2;8(363):363ra148
pubmed: 27807283
Cell Stem Cell. 2018 Mar 1;22(3):294-297
pubmed: 29499147
Int J Bioprint. 2021 Jun 04;7(3):362
pubmed: 34286149
Biomaterials. 2016 Dec;111:66-79
pubmed: 27723557
Nat Mater. 2017 Oct;16(10):1038-1046
pubmed: 28805824
Biomaterials. 2017 Jul;131:111-120
pubmed: 28384492
Trends Plant Sci. 2016 May;21(5):376-387
pubmed: 26880317
Sci Adv. 2020 Jun 24;6(26):eabb5067
pubmed: 32637623
Adv Sci (Weinh). 2019 Apr 15;6(11):1900344
pubmed: 31179230
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):565-70
pubmed: 20018748
Nat Protoc. 2019 Oct;14(10):2781-2817
pubmed: 31492957
Biofabrication. 2020 Jul 29;12(4):042002
pubmed: 32615543
Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):1898-1903
pubmed: 28167795
Biomaterials. 2014 Aug;35(25):6739-49
pubmed: 24840618
Nat Mater. 2008 Dec;7(12):1003-10
pubmed: 18978786
Small. 2022 Apr;18(16):e2108102
pubmed: 35253997
Eur Heart J. 2015 Aug 7;36(30):2011-7
pubmed: 25990469
Sci Transl Med. 2016 Jun 8;8(342):342ps13
pubmed: 27280684
Biomaterials. 2020 Oct;256:120195
pubmed: 32623207
Tissue Eng Part C Methods. 2015 May;21(5):509-17
pubmed: 25390971
Physiol Genomics. 2012 Feb 27;44(4):245-58
pubmed: 22166955
Nat Commun. 2019 Oct 25;10(1):4866
pubmed: 31653830
Am J Transl Res. 2015 Mar 15;7(3):558-73
pubmed: 26045895
Environ Health Perspect. 2012 Sep;120(9):1243-51
pubmed: 22672789
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7586-91
pubmed: 23610423