Orbital-resolved observation of singlet fission.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
received:
28
03
2022
accepted:
06
02
2023
medline:
14
4
2023
entrez:
12
4
2023
pubmed:
13
4
2023
Statut:
ppublish
Résumé
Singlet fission
Identifiants
pubmed: 37045918
doi: 10.1038/s41586-023-05814-1
pii: 10.1038/s41586-023-05814-1
pmc: PMC10097594
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
275-279Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2023. The Author(s).
Références
Swenberg, C. E. & Stacy, W. T. Bimolecular radiationless transitions in crystalline tetracene. Chem. Phys. Lett. 2, 327–328 (1968).
doi: 10.1016/0009-2614(68)80087-9
Smith, M. B. & Michl, J. Singlet fission. Chem. Rev. 110, 6891–6936 (2010).
pubmed: 21053979
doi: 10.1021/cr1002613
Chan, W.-L. et al. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science 334, 1541–1545 (2011).
pubmed: 22174249
doi: 10.1126/science.1213986
Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Microscopic theory of singlet exciton fission. I. General formulation. J. Chem. Phys. 138, 114102 (2013).
pubmed: 23534622
doi: 10.1063/1.4794425
Yost, S. R. et al. A transferable model for singlet-fission kinetics. Nat. Chem. 6, 492–497 (2014).
pubmed: 24848234
doi: 10.1038/nchem.1945
Musser, A. J. et al. Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nat. Phys. 11, 352–357 (2015).
doi: 10.1038/nphys3241
Bakulin, A. A. et al. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy. Nat. Chem. 8, 16–23 (2016).
pubmed: 26673260
doi: 10.1038/nchem.2371
Tayebjee, M. J. Y. et al. Quintet multiexciton dynamics in singlet fission. Nat. Phys. 13, 182–188 (2017).
doi: 10.1038/nphys3909
Tempelaar, R. & Reichman, D. R. Vibronic exciton theory of singlet fission. I. Linear absorption and the anatomy of the correlated triplet pair state. J. Chem. Phys. 146, 174703 (2017).
pubmed: 28477613
doi: 10.1063/1.4982362
Refaely-Abramson, S., da Jornada, F. H., Louie, S. G. & Neaton, J. B. Origins of singlet fission in solid pentacene from an ab initio Green’s function approach. Phys. Rev. Lett. 119, 267401 (2017).
pubmed: 29328724
doi: 10.1103/PhysRevLett.119.267401
Broch, K. et al. Robust singlet fission in pentacene thin films with tuned charge transfer interactions. Nat. Commun. 9, 954 (2018).
pubmed: 29507287
pmcid: 5838205
doi: 10.1038/s41467-018-03300-1
Duan, H.-G. et al. Intermolecular vibrations mediate ultrafast singlet fission. Sci. Adv. 6, eabb0052 (2020).
pubmed: 32948583
pmcid: 7500928
doi: 10.1126/sciadv.abb0052
Taffet, E. J., Beljonne, D. & Scholes, G. D. Overlap-driven splitting of triplet pairs in singlet fission. J. Am. Chem. Soc. 142, 20040–20047 (2020).
pubmed: 33190497
doi: 10.1021/jacs.0c09276
Green, M. A. Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog. Photovoltaics Res. Appl. 9, 123–135 (2001).
doi: 10.1002/pip.360
Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006).
doi: 10.1063/1.2356795
Einzinger, M. et al. Sensitization of silicon by singlet exciton fission in tetracene. Nature 571, 90–94 (2019).
pubmed: 31270480
doi: 10.1038/s41586-019-1339-4
Miyata, K., Conrad-Burton, F. S., Geyer, F. L. & Zhu, X.-Y. Triplet pair states in singlet fission. Chem. Rev. 119, 4261–4292 (2019).
pubmed: 30721032
doi: 10.1021/acs.chemrev.8b00572
Cocker, T. L., Peller, D., Yu, P., Repp, J. & Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539, 263–267 (2016).
pubmed: 27830788
pmcid: 5597038
doi: 10.1038/nature19816
Wallauer, R. et al. Tracing orbital images on ultrafast time scales. Science 371, 1056–1059 (2021).
pubmed: 33602865
doi: 10.1126/science.abf3286
Garg, M. et al. Real-space subfemtosecond imaging of quantum electronic coherences in molecules. Nat. Photonics 16, 196–202 (2022).
doi: 10.1038/s41566-021-00929-1
Vaswani, C. et al. Light-driven Raman coherence as a nonthermal route to ultrafast topology switching in a Dirac semimetal. Phys. Rev. X. 10, 021013 (2020).
Luo, L. et al. A light-induced phononic symmetry switch and giant dissipationless topological photocurrent in ZrTe
pubmed: 33462464
doi: 10.1038/s41563-020-00882-4
Beaulieu, S. et al. Ultrafast dynamical Lifshitz transition. Sci. Adv. 7, eabd9275 (2021).
pubmed: 33883128
pmcid: 8059938
doi: 10.1126/sciadv.abd9275
Pensack, R. D. et al. Observation of two triplet-pair intermediates in singlet exciton fission. J. Phys. Chem. Lett. 7, 2370–2375 (2016).
pubmed: 27281713
doi: 10.1021/acs.jpclett.6b00947
Yong, C. K. et al. The entangled triplet pair state in acene and heteroacene materials. Nat. Commun. 8, 15953 (2017).
pubmed: 28699637
pmcid: 5510179
doi: 10.1038/ncomms15953
Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Microscopic theory of singlet exciton fission. II. Application to pentacene dimers and the role of superexchange. J. Chem. Phys. 138, 114103 (2013).
pubmed: 23534623
doi: 10.1063/1.4794427
Busby, E. et al. A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor–acceptor organic materials. Nat. Mater. 14, 426–433 (2015).
pubmed: 25581625
doi: 10.1038/nmat4175
Margulies, E. A. et al. Enabling singlet fission by controlling intramolecular charge transfer in π-stacked covalent terrylenediimide dimers. Nat. Chem. 8, 1120–1125 (2016).
pubmed: 27874873
doi: 10.1038/nchem.2589
Alvertis, A. et al. Switching between coherent and incoherent singlet fission via solvent-induced symmetry breaking. J. Am. Chem. Soc. 141, 17558–17570 (2019).
pubmed: 31604015
doi: 10.1021/jacs.9b05561
Chan, W.-L. et al. The quantum coherent mechanism for singlet fission: experiment and theory. Acc. Chem. Res. 46, 1321–1329 (2013).
pubmed: 23581494
doi: 10.1021/ar300286s
Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).
doi: 10.1103/RevModPhys.75.473
Puschnig, P. et al. Reconstruction of molecular orbital densities from photoemission data. Science 326, 702–706 (2009).
pubmed: 19745118
doi: 10.1126/science.1176105
Ziroff, J., Forster, F., Schöll, A., Puschnig, P. & Reinert, F. Hybridization of organic molecular orbitals with substrate states at interfaces: PTCDA on silver. Phys. Rev. Lett. 104, 233004 (2010).
pubmed: 20867234
doi: 10.1103/PhysRevLett.104.233004
Moser, S. An experimentalist’s guide to the matrix element in angle resolved photoemission. J. Electron Spectrosc. Relat. Phenom. 214, 29–52 (2017).
doi: 10.1016/j.elspec.2016.11.007
Sharifzadeh, S., Darancet, P., Kronik, L. & Neaton, J. B. Low-energy charge-transfer excitons in organic solids from first-principles: the case of pentacene. J. Phys. Chem. Lett. 4, 2197–2201 (2013).
doi: 10.1021/jz401069f
Giannini, S. et al. Quantum localization and delocalization of charge carriers in organic semiconducting crystals. Nat. Commun. 10, 3843 (2019).
pubmed: 31451687
pmcid: 6710274
doi: 10.1038/s41467-019-11775-9
Fratini, S., Nikolka, M., Salleo, A., Schweicher, G. & Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 19, 491–502 (2020).
pubmed: 32296138
doi: 10.1038/s41563-020-0647-2
Puppin, M. et al. Time- and angle-resolved photoemission spectroscopy of solids in the extreme ultraviolet at 500 kHz repetition rate. Rev. Sci. Instrum. 90, 023104 (2019).
pubmed: 30831759
doi: 10.1063/1.5081938
Fukagawa, H. et al. Origin of the highest occupied band position in pentacene films from ultraviolet photoelectron spectroscopy: hole stabilization versus band dispersion. Phys. Rev. B. 73, 245310 (2006).
doi: 10.1103/PhysRevB.73.245310
Cudazzo, P., Gatti, M. & Rubio, A. Excitons in molecular crystals from first-principles many-body perturbation theory: picene versus pentacene. Phys. Rev. B. 86, 195307 (2012).
doi: 10.1103/PhysRevB.86.195307
Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Microscopic theory of singlet exciton fission. III. Crystalline pentacene. J. Chem. Phys. 141, 074705 (2014).
pubmed: 25149804
doi: 10.1063/1.4892793
Burgos, J., Pope, M., Swenberg, Ch. E. & Alfano, R. R. Heterofission in pentacene-doped tetracene single crystals. Phys. Status Solidi B. 83, 249–256 (1977).
doi: 10.1002/pssb.2220830127
Puschnig, P. et al. Orbital tomography: deconvoluting photoemission spectra of organic molecules. Phys. Rev. B. 84, 235427 (2011).
doi: 10.1103/PhysRevB.84.235427
Chan, W.-L., Ligges, M. & Zhu, X.-Y. The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. Nat. Chem. 4, 840–845 (2012).
pubmed: 23000998
doi: 10.1038/nchem.1436
Monahan, N. R. et al. Dynamics of the triplet-pair state reveals the likely coexistence of coherent and incoherent singlet fission in crystalline hexacene. Nat. Chem. 9, 341–346 (2017).
pubmed: 28338681
doi: 10.1038/nchem.2665
Maklar, J. et al. A quantitative comparison of time-of-flight momentum microscopes and hemispherical analyzers for time- and angle-resolved photoemission spectroscopy experiments. Rev. Sci. Instrum. 91, 123112 (2020).
pubmed: 33379994
doi: 10.1063/5.0024493
Laudise, R. A., Kloc, C., Simpkins, P. G. & Siegrist, T. Physical vapor growth of organic semiconductors. J. Cryst. Growth 187, 449–454 (1998).
doi: 10.1016/S0022-0248(98)00034-7
Kloc, C., Siegrist, T. & Pflaum, J. in Springer Handbook of Crystal Growth(eds Dhanaraj, G. et al.) 845–867 (Springer, 2010).
Hammer, S. et al. Spatial anisotropy of charge transfer at perfluoropentacene–pentacene (001) single-crystal interfaces and its relevance for thin film devices. ACS Appl. Mater. Interfaces 12, 53547–53556 (2020).
pubmed: 33167608
doi: 10.1021/acsami.0c17152
Mattheus, C. C. et al. Polymorphism in pentacene. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 57, 939–941 (2001).
doi: 10.1107/S010827010100703X
Siegrist, T. et al. A polymorph lost and found: the high-temperature crystal structure of pentacene. Adv. Mater. 19, 2079–2082 (2007).
doi: 10.1002/adma.200602072