Orbital-resolved observation of singlet fission.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
04 2023
Historique:
received: 28 03 2022
accepted: 06 02 2023
medline: 14 4 2023
entrez: 12 4 2023
pubmed: 13 4 2023
Statut: ppublish

Résumé

Singlet fission

Identifiants

pubmed: 37045918
doi: 10.1038/s41586-023-05814-1
pii: 10.1038/s41586-023-05814-1
pmc: PMC10097594
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

275-279

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2023. The Author(s).

Références

Swenberg, C. E. & Stacy, W. T. Bimolecular radiationless transitions in crystalline tetracene. Chem. Phys. Lett. 2, 327–328 (1968).
doi: 10.1016/0009-2614(68)80087-9
Smith, M. B. & Michl, J. Singlet fission. Chem. Rev. 110, 6891–6936 (2010).
pubmed: 21053979 doi: 10.1021/cr1002613
Chan, W.-L. et al. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science 334, 1541–1545 (2011).
pubmed: 22174249 doi: 10.1126/science.1213986
Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Microscopic theory of singlet exciton fission. I. General formulation. J. Chem. Phys. 138, 114102 (2013).
pubmed: 23534622 doi: 10.1063/1.4794425
Yost, S. R. et al. A transferable model for singlet-fission kinetics. Nat. Chem. 6, 492–497 (2014).
pubmed: 24848234 doi: 10.1038/nchem.1945
Musser, A. J. et al. Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nat. Phys. 11, 352–357 (2015).
doi: 10.1038/nphys3241
Bakulin, A. A. et al. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy. Nat. Chem. 8, 16–23 (2016).
pubmed: 26673260 doi: 10.1038/nchem.2371
Tayebjee, M. J. Y. et al. Quintet multiexciton dynamics in singlet fission. Nat. Phys. 13, 182–188 (2017).
doi: 10.1038/nphys3909
Tempelaar, R. & Reichman, D. R. Vibronic exciton theory of singlet fission. I. Linear absorption and the anatomy of the correlated triplet pair state. J. Chem. Phys. 146, 174703 (2017).
pubmed: 28477613 doi: 10.1063/1.4982362
Refaely-Abramson, S., da Jornada, F. H., Louie, S. G. & Neaton, J. B. Origins of singlet fission in solid pentacene from an ab initio Green’s function approach. Phys. Rev. Lett. 119, 267401 (2017).
pubmed: 29328724 doi: 10.1103/PhysRevLett.119.267401
Broch, K. et al. Robust singlet fission in pentacene thin films with tuned charge transfer interactions. Nat. Commun. 9, 954 (2018).
pubmed: 29507287 pmcid: 5838205 doi: 10.1038/s41467-018-03300-1
Duan, H.-G. et al. Intermolecular vibrations mediate ultrafast singlet fission. Sci. Adv. 6, eabb0052 (2020).
pubmed: 32948583 pmcid: 7500928 doi: 10.1126/sciadv.abb0052
Taffet, E. J., Beljonne, D. & Scholes, G. D. Overlap-driven splitting of triplet pairs in singlet fission. J. Am. Chem. Soc. 142, 20040–20047 (2020).
pubmed: 33190497 doi: 10.1021/jacs.0c09276
Green, M. A. Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog. Photovoltaics Res. Appl. 9, 123–135 (2001).
doi: 10.1002/pip.360
Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006).
doi: 10.1063/1.2356795
Einzinger, M. et al. Sensitization of silicon by singlet exciton fission in tetracene. Nature 571, 90–94 (2019).
pubmed: 31270480 doi: 10.1038/s41586-019-1339-4
Miyata, K., Conrad-Burton, F. S., Geyer, F. L. & Zhu, X.-Y. Triplet pair states in singlet fission. Chem. Rev. 119, 4261–4292 (2019).
pubmed: 30721032 doi: 10.1021/acs.chemrev.8b00572
Cocker, T. L., Peller, D., Yu, P., Repp, J. & Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539, 263–267 (2016).
pubmed: 27830788 pmcid: 5597038 doi: 10.1038/nature19816
Wallauer, R. et al. Tracing orbital images on ultrafast time scales. Science 371, 1056–1059 (2021).
pubmed: 33602865 doi: 10.1126/science.abf3286
Garg, M. et al. Real-space subfemtosecond imaging of quantum electronic coherences in molecules. Nat. Photonics 16, 196–202 (2022).
doi: 10.1038/s41566-021-00929-1
Vaswani, C. et al. Light-driven Raman coherence as a nonthermal route to ultrafast topology switching in a Dirac semimetal. Phys. Rev. X. 10, 021013 (2020).
Luo, L. et al. A light-induced phononic symmetry switch and giant dissipationless topological photocurrent in ZrTe
pubmed: 33462464 doi: 10.1038/s41563-020-00882-4
Beaulieu, S. et al. Ultrafast dynamical Lifshitz transition. Sci. Adv. 7, eabd9275 (2021).
pubmed: 33883128 pmcid: 8059938 doi: 10.1126/sciadv.abd9275
Pensack, R. D. et al. Observation of two triplet-pair intermediates in singlet exciton fission. J. Phys. Chem. Lett. 7, 2370–2375 (2016).
pubmed: 27281713 doi: 10.1021/acs.jpclett.6b00947
Yong, C. K. et al. The entangled triplet pair state in acene and heteroacene materials. Nat. Commun. 8, 15953 (2017).
pubmed: 28699637 pmcid: 5510179 doi: 10.1038/ncomms15953
Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Microscopic theory of singlet exciton fission. II. Application to pentacene dimers and the role of superexchange. J. Chem. Phys. 138, 114103 (2013).
pubmed: 23534623 doi: 10.1063/1.4794427
Busby, E. et al. A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor–acceptor organic materials. Nat. Mater. 14, 426–433 (2015).
pubmed: 25581625 doi: 10.1038/nmat4175
Margulies, E. A. et al. Enabling singlet fission by controlling intramolecular charge transfer in π-stacked covalent terrylenediimide dimers. Nat. Chem. 8, 1120–1125 (2016).
pubmed: 27874873 doi: 10.1038/nchem.2589
Alvertis, A. et al. Switching between coherent and incoherent singlet fission via solvent-induced symmetry breaking. J. Am. Chem. Soc. 141, 17558–17570 (2019).
pubmed: 31604015 doi: 10.1021/jacs.9b05561
Chan, W.-L. et al. The quantum coherent mechanism for singlet fission: experiment and theory. Acc. Chem. Res. 46, 1321–1329 (2013).
pubmed: 23581494 doi: 10.1021/ar300286s
Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).
doi: 10.1103/RevModPhys.75.473
Puschnig, P. et al. Reconstruction of molecular orbital densities from photoemission data. Science 326, 702–706 (2009).
pubmed: 19745118 doi: 10.1126/science.1176105
Ziroff, J., Forster, F., Schöll, A., Puschnig, P. & Reinert, F. Hybridization of organic molecular orbitals with substrate states at interfaces: PTCDA on silver. Phys. Rev. Lett. 104, 233004 (2010).
pubmed: 20867234 doi: 10.1103/PhysRevLett.104.233004
Moser, S. An experimentalist’s guide to the matrix element in angle resolved photoemission. J. Electron Spectrosc. Relat. Phenom. 214, 29–52 (2017).
doi: 10.1016/j.elspec.2016.11.007
Sharifzadeh, S., Darancet, P., Kronik, L. & Neaton, J. B. Low-energy charge-transfer excitons in organic solids from first-principles: the case of pentacene. J. Phys. Chem. Lett. 4, 2197–2201 (2013).
doi: 10.1021/jz401069f
Giannini, S. et al. Quantum localization and delocalization of charge carriers in organic semiconducting crystals. Nat. Commun. 10, 3843 (2019).
pubmed: 31451687 pmcid: 6710274 doi: 10.1038/s41467-019-11775-9
Fratini, S., Nikolka, M., Salleo, A., Schweicher, G. & Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 19, 491–502 (2020).
pubmed: 32296138 doi: 10.1038/s41563-020-0647-2
Puppin, M. et al. Time- and angle-resolved photoemission spectroscopy of solids in the extreme ultraviolet at 500 kHz repetition rate. Rev. Sci. Instrum. 90, 023104 (2019).
pubmed: 30831759 doi: 10.1063/1.5081938
Fukagawa, H. et al. Origin of the highest occupied band position in pentacene films from ultraviolet photoelectron spectroscopy: hole stabilization versus band dispersion. Phys. Rev. B. 73, 245310 (2006).
doi: 10.1103/PhysRevB.73.245310
Cudazzo, P., Gatti, M. & Rubio, A. Excitons in molecular crystals from first-principles many-body perturbation theory: picene versus pentacene. Phys. Rev. B. 86, 195307 (2012).
doi: 10.1103/PhysRevB.86.195307
Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Microscopic theory of singlet exciton fission. III. Crystalline pentacene. J. Chem. Phys. 141, 074705 (2014).
pubmed: 25149804 doi: 10.1063/1.4892793
Burgos, J., Pope, M., Swenberg, Ch. E. & Alfano, R. R. Heterofission in pentacene-doped tetracene single crystals. Phys. Status Solidi B. 83, 249–256 (1977).
doi: 10.1002/pssb.2220830127
Puschnig, P. et al. Orbital tomography: deconvoluting photoemission spectra of organic molecules. Phys. Rev. B. 84, 235427 (2011).
doi: 10.1103/PhysRevB.84.235427
Chan, W.-L., Ligges, M. & Zhu, X.-Y. The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. Nat. Chem. 4, 840–845 (2012).
pubmed: 23000998 doi: 10.1038/nchem.1436
Monahan, N. R. et al. Dynamics of the triplet-pair state reveals the likely coexistence of coherent and incoherent singlet fission in crystalline hexacene. Nat. Chem. 9, 341–346 (2017).
pubmed: 28338681 doi: 10.1038/nchem.2665
Maklar, J. et al. A quantitative comparison of time-of-flight momentum microscopes and hemispherical analyzers for time- and angle-resolved photoemission spectroscopy experiments. Rev. Sci. Instrum. 91, 123112 (2020).
pubmed: 33379994 doi: 10.1063/5.0024493
Laudise, R. A., Kloc, C., Simpkins, P. G. & Siegrist, T. Physical vapor growth of organic semiconductors. J. Cryst. Growth 187, 449–454 (1998).
doi: 10.1016/S0022-0248(98)00034-7
Kloc, C., Siegrist, T. & Pflaum, J. in Springer Handbook of Crystal Growth(eds Dhanaraj, G. et al.) 845–867 (Springer, 2010).
Hammer, S. et al. Spatial anisotropy of charge transfer at perfluoropentacene–pentacene (001) single-crystal interfaces and its relevance for thin film devices. ACS Appl. Mater. Interfaces 12, 53547–53556 (2020).
pubmed: 33167608 doi: 10.1021/acsami.0c17152
Mattheus, C. C. et al. Polymorphism in pentacene. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 57, 939–941 (2001).
doi: 10.1107/S010827010100703X
Siegrist, T. et al. A polymorph lost and found: the high-temperature crystal structure of pentacene. Adv. Mater. 19, 2079–2082 (2007).
doi: 10.1002/adma.200602072

Auteurs

Alexander Neef (A)

Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany. neef@fhi.mpg.de.

Samuel Beaulieu (S)

Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany.
CELIA, University of Bordeaux-CNRS-CEA, Bordeaux, France.

Sebastian Hammer (S)

Experimental Physics VI, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany.
Center for the Physics of Materials, Departments of Physics and Chemistry, McGill University, Montréal, Quebec, Canada.

Shuo Dong (S)

Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany.

Julian Maklar (J)

Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany.

Tommaso Pincelli (T)

Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany.
Institute for Optics and Atomic Physics, Technical University Berlin, Berlin, Germany.

R Patrick Xian (RP)

Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany.
Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada.

Martin Wolf (M)

Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany.

Laurenz Rettig (L)

Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany.

Jens Pflaum (J)

Experimental Physics VI, Julius-Maximilian University Wuerzburg, Wuerzburg, Germany.
Barvarian Centre for Applied Energy Research, Wuerzburg, Germany.

Ralph Ernstorfer (R)

Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany. ernstorfer@tu-berlin.de.
Institute for Optics and Atomic Physics, Technical University Berlin, Berlin, Germany. ernstorfer@tu-berlin.de.

Classifications MeSH