Excitement and Concerns of Young Radiation Oncologists over Automatic Segmentation: A French Perspective.

artificial intelligence automatic segmentation radiation oncology

Journal

Cancers
ISSN: 2072-6694
Titre abrégé: Cancers (Basel)
Pays: Switzerland
ID NLM: 101526829

Informations de publication

Date de publication:
29 Mar 2023
Historique:
received: 27 02 2023
revised: 21 03 2023
accepted: 24 03 2023
medline: 14 4 2023
entrez: 13 4 2023
pubmed: 14 4 2023
Statut: epublish

Résumé

Segmentation of organs at risk (OARs) and target volumes need time and precision but are highly repetitive tasks. Radiation oncology has known tremendous technological advances in recent years, the latest being brought by artificial intelligence (AI). Despite the advantages brought by AI for segmentation, some concerns were raised by academics regarding the impact on young radiation oncologists' training. A survey was thus conducted on young french radiation oncologists (ROs) by the SFjRO (Société Française des jeunes Radiothérapeutes Oncologues). The SFjRO organizes regular webinars focusing on anatomical localization, discussing either segmentation or dosimetry. Completion of the survey was mandatory for registration to a dosimetry webinar dedicated to head and neck (H & N) cancers. The survey was generated in accordance with the CHERRIES guidelines. Quantitative data (e.g., time savings and correction needs) were not measured but determined among the propositions. 117 young ROs from 35 different and mostly academic centers participated. Most centers were either already equipped with such solutions or planning to be equipped in the next two years. AI segmentation software was mostly useful for H & N cases. While for the definition of OARs, participants experienced a significant time gain using AI-proposed delineations, with almost 35% of the participants saving between 50-100% of the segmentation time, time gained for target volumes was significantly lower, with only 8.6% experiencing a 50-100% gain. Contours still needed to be thoroughly checked, especially target volumes for some, and edited. The majority of participants suggested that these tools should be integrated into the training so that future radiation oncologists do not neglect the importance of radioanatomy. Fully aware of this risk, up to one-third of them even suggested that AI tools should be reserved for senior physicians only. We believe this survey on automatic segmentation to be the first to focus on the perception of young radiation oncologists. Software developers should focus on enhancing the quality of proposed segmentations, while young radiation oncologists should become more acquainted with these tools.

Identifiants

pubmed: 37046704
pii: cancers15072040
doi: 10.3390/cancers15072040
pmc: PMC10093734
pii:
doi:

Types de publication

Journal Article

Langues

eng

Références

Sci Rep. 2022 Aug 11;12(1):13650
pubmed: 35953516
Radiother Oncol. 2019 Feb;131:192-201
pubmed: 30206021
Cancer Radiother. 2021 Oct;25(6-7):607-616
pubmed: 34389243
Rep Pract Oncol Radiother. 2012 Aug 09;17(5):255-8
pubmed: 24669304
J Med Internet Res. 2004 Sep 29;6(3):e34
pubmed: 15471760
Nat Rev Clin Oncol. 2020 Dec;17(12):771-781
pubmed: 32843739
Radiother Oncol. 2015 Oct;117(1):83-90
pubmed: 26277855
Radiother Oncol. 2017 Mar;122(3):416-422
pubmed: 28233564
Bull Cancer. 2022 Jul-Aug;109(7-8):834-843
pubmed: 35672186
Oncology. 2021;99(2):124-134
pubmed: 33352552
Front Oncol. 2021 Jul 08;11:717039
pubmed: 34336704
Artif Intell Med. 2015 Jun;64(2):75-87
pubmed: 26025124
Eur J Cancer. 2010 Oct;46(15):2708-15
pubmed: 20627537
Ecancermedicalscience. 2017 Nov 30;11:785
pubmed: 29225692
Radiother Oncol. 2019 Jun;135:130-140
pubmed: 31015159
Pract Radiat Oncol. 2021 Jul-Aug;11(4):e434-e437
pubmed: 33561549
Radiother Oncol. 2020 Dec;153:55-66
pubmed: 32920005
Cancer Radiother. 2014 Jan;18(1):28-34
pubmed: 24332865
Quant Imaging Med Surg. 2021 Dec;11(12):4847-4858
pubmed: 34888194
Hematol Oncol Clin North Am. 2019 Dec;33(6):1095-1104
pubmed: 31668208
Clin Oncol (R Coll Radiol). 2022 Feb;34(2):74-88
pubmed: 34996682
Rep Pract Oncol Radiother. 2012 Aug 09;17(5):251-4
pubmed: 24669303
Int J Radiat Oncol Biol Phys. 2021 Aug 1;110(5):1306-1316
pubmed: 33794306
Nat Methods. 2021 Feb;18(2):203-211
pubmed: 33288961
BJR Open. 2019 May 13;1(1):20180031
pubmed: 33178922
Diagnostics (Basel). 2021 Oct 22;11(11):
pubmed: 34829310
Mol Oncol. 2020 Jul;14(7):1500-1513
pubmed: 32124546
Cancer Radiother. 2022 Oct;26(6-7):905-910
pubmed: 36055907
Radiother Oncol. 2019 Jan;130:68-74
pubmed: 30551889
Radiother Oncol. 2022 Feb;167:261-268
pubmed: 34990727
J Contemp Brachytherapy. 2022 Dec;14(6):501-511
pubmed: 36819467
Cancer Manag Res. 2021 Nov 02;13:8209-8217
pubmed: 34754241

Auteurs

Vincent Bourbonne (V)

Radiation Oncology Department, University Hospital Brest, 2 Avenue Foch, 29200 Brest, France.
Société Française des Jeunes Radiothérapeutes Oncologues, 47 Rue de la Colonie, 75013 Paris, France.

Adrien Laville (A)

Radiation Oncology Department, University Hospital Amiens-Picardie, 30 Avenue de la Croix Jourdain, 80054 Amiens, France.

Nicolas Wagneur (N)

Société Française des Jeunes Radiothérapeutes Oncologues, 47 Rue de la Colonie, 75013 Paris, France.
Radiation Oncology Department, Institut de Cancérologie de l'Ouest, Centre Paul Papin, 15 Rue André Bocquel, 49055 Angers, France.

Youssef Ghannam (Y)

Société Française des Jeunes Radiothérapeutes Oncologues, 47 Rue de la Colonie, 75013 Paris, France.
Radiation Oncology Department, Institut de Cancérologie de l'Ouest, Centre Paul Papin, 15 Rue André Bocquel, 49055 Angers, France.

Audrey Larnaudie (A)

Société Française des Jeunes Radiothérapeutes Oncologues, 47 Rue de la Colonie, 75013 Paris, France.
Radiation Oncology Department, Centre François Baclesse, 3 Avenue du Général Harris, 14000 Caen, France.

Classifications MeSH