The Combined Use of Automated Milking System and Sensor Data to Improve Detection of Mild Lameness in Dairy Cattle.
automated milking system
automated monitoring sensors
claw-position score
dairy cattle
early detection of lameness
lameness
locomotion score
Journal
Animals : an open access journal from MDPI
ISSN: 2076-2615
Titre abrégé: Animals (Basel)
Pays: Switzerland
ID NLM: 101635614
Informations de publication
Date de publication:
28 Mar 2023
28 Mar 2023
Historique:
received:
02
03
2023
revised:
23
03
2023
accepted:
25
03
2023
medline:
14
4
2023
entrez:
13
4
2023
pubmed:
14
4
2023
Statut:
epublish
Résumé
This study aimed to develop a tool to detect mildly lame cows by combining already existing data from sensors, AMSs, and routinely recorded animal and farm data. For this purpose, ten dairy farms were visited every 30-42 days from January 2020 to May 2021. Locomotion scores (LCS, from one for nonlame to five for severely lame) and body condition scores (BCS) were assessed at each visit, resulting in a total of 594 recorded animals. A questionnaire about farm management and husbandry was completed for the inclusion of potential risk factors. A lameness incidence risk (LCS ≥ 2) was calculated and varied widely between farms with a range from 27.07 to 65.52%. Moreover, the impact of lameness on the derived sensor parameters was inspected and showed no significant impact of lameness on total rumination time. Behavioral patterns for eating, low activity, and medium activity differed significantly in lame cows compared to nonlame cows. Finally, random forest models for lameness detection were fit by including different combinations of influencing variables. The results of these models were compared according to accuracy, sensitivity, and specificity. The best performing model achieved an accuracy of 0.75 with a sensitivity of 0.72 and specificity of 0.78. These approaches with routinely available data and sensor data can deliver promising results for early lameness detection in dairy cattle. While experimental automated lameness detection systems have achieved improved predictive results, the benefit of this presented approach is that it uses results from existing, routinely recorded, and therefore widely available data.
Identifiants
pubmed: 37048436
pii: ani13071180
doi: 10.3390/ani13071180
pmc: PMC10093521
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Austrian Research Promotion Agency
ID : 872039
Références
J Dairy Sci. 2017 Jan;100(1):653-665
pubmed: 27865503
Animals (Basel). 2022 Mar 22;12(7):
pubmed: 35405797
J Dairy Sci. 2019 Jul;102(7):6288-6295
pubmed: 31056328
J Dairy Res. 2007 Feb;74(1):40-6
pubmed: 16978436
Animals (Basel). 2017 Oct 08;7(10):
pubmed: 28991188
PLoS One. 2016 Jan 21;11(1):e0146718
pubmed: 26795970
Vet J. 2019 Apr;246:35-44
pubmed: 30902187
J Dairy Sci. 2019 Apr;102(4):3392-3405
pubmed: 30738672
Prev Vet Med. 2020 May;178:104993
pubmed: 32334285
J Dairy Sci. 2022 Feb;105(2):1418-1431
pubmed: 34802737
Vet Rec. 1996 Jun 15;138(24):586-91
pubmed: 8799985
Front Vet Sci. 2016 May 10;3:37
pubmed: 27243025
J Dairy Sci. 2014 Jul;97(7):4317-21
pubmed: 24792807
J Dairy Sci. 2017 Mar;100(3):2404-2414
pubmed: 28109587
J Dairy Sci. 2016 Apr;99(4):2904-2914
pubmed: 26874422
Animals (Basel). 2019 May 23;9(5):
pubmed: 31126064
J Dairy Sci. 2018 Jul;101(7):6310-6321
pubmed: 29705427
Tijdschr Diergeneeskd. 2005 Jul 15-Aug 1;130(14-15):440-3
pubmed: 16111114
J Anim Sci. 2021 Nov 1;99(11):
pubmed: 34662372
Ir Vet J. 2022 Jun 8;75(1):14
pubmed: 35672794
J Dairy Sci. 2013 Jul;96(7):4286-98
pubmed: 23684042
J Dairy Sci. 2012 Dec;95(12):7399-408
pubmed: 23063152
J Dairy Sci. 2019 Feb;102(2):1522-1529
pubmed: 30594372
J Dairy Sci. 2014 May;97(5):2974-9
pubmed: 24630647
Prev Vet Med. 2009 Nov 1;92(1-2):123-33
pubmed: 19682757
J Dairy Sci. 2006 Jan;89(1):139-46
pubmed: 16357276
Animal. 2012 Jun;6(6):962-70
pubmed: 22558967
Ir Vet J. 2021 Feb 6;74(1):4
pubmed: 33549140
Theriogenology. 2020 Nov;157:61-69
pubmed: 32805643
J Dairy Sci. 2017 Jun;100(6):4818-4828
pubmed: 28434734
J Dairy Sci. 2012 Nov;95(11):6546-9
pubmed: 22939795
J Dairy Sci. 2012 May;95(5):2765-77
pubmed: 22541507
Schweiz Arch Tierheilkd. 2021 Feb;163(2):123-138
pubmed: 33528363
Vet Med Sci. 2018 Apr 29;:
pubmed: 29707919
Sci Rep. 2021 Oct 27;11(1):21152
pubmed: 34707145
Vet Rec. 2010 Aug 14;167(7):238-40
pubmed: 20710030
Biometrics. 1977 Jun;33(2):363-74
pubmed: 884196
J Dairy Sci. 2010 Jun;93(6):2419-32
pubmed: 20494150
J Dairy Sci. 2018 Nov;101(11):10168-10176
pubmed: 30146280
J Reprod Dev. 2010 Jan;56 Suppl:S48-52
pubmed: 20629217
J Dairy Sci. 2018 Jan;101(1):637-648
pubmed: 29102143
PLoS One. 2016 May 17;11(5):e0155796
pubmed: 27187073
J Dairy Sci. 2018 Mar;101(3):2370-2382
pubmed: 29290435
J Anim Sci. 2021 Sep 1;99(9):
pubmed: 34223900
Vet Clin North Am Food Anim Pract. 2017 Jul;33(2):153-164
pubmed: 28392188
J Dairy Sci. 2016 Jan;99(1):551-61
pubmed: 26547637
Animals (Basel). 2015 Aug 28;5(3):838-60
pubmed: 26479389
J Dairy Sci. 2014 Dec;97(12):7476-86
pubmed: 25282423
Schweiz Arch Tierheilkd. 2021 Nov;164(11):721-736
pubmed: 34758949
J Dairy Sci. 2016 Nov;99(11):9069-9079
pubmed: 27592439
Animals (Basel). 2015 Aug 28;5(3):861-85
pubmed: 26479390
Front Vet Sci. 2020 Feb 28;7:125
pubmed: 32185190
J Dairy Sci. 2015 Nov;98(11):7426-45
pubmed: 26342982
J Dairy Sci. 2009 Sep;92(9):4365-74
pubmed: 19700696
Animals (Basel). 2022 Mar 11;12(6):
pubmed: 35327100
Theriogenology. 1997 Apr 15;47(6):1179-87
pubmed: 16728067
J Dairy Res. 2015 Nov;82(4):391-9
pubmed: 26278403
Berl Munch Tierarztl Wochenschr. 2015 Jul-Aug;128(7-8):319-25
pubmed: 26281446