Blood β-synuclein is related to amyloid PET positivity in memory clinic patients.
Alzheimer´s disease
amyloid beta PET
blood biomarker
synaptic degeneration
β-synuclein
Journal
Alzheimer's & dementia : the journal of the Alzheimer's Association
ISSN: 1552-5279
Titre abrégé: Alzheimers Dement
Pays: United States
ID NLM: 101231978
Informations de publication
Date de publication:
11 2023
11 2023
Historique:
revised:
20
01
2023
received:
08
11
2022
accepted:
24
01
2023
medline:
16
11
2023
pubmed:
14
4
2023
entrez:
13
4
2023
Statut:
ppublish
Résumé
β-synuclein is an emerging blood biomarker to study synaptic degeneration in Alzheimer´s disease (AD), but its relation to amyloid-β (Αβ) pathology is unclear. We investigated the association of plasma β-synuclein levels with Plasma β-synuclein levels were higher in Aβ+ (AD dementia, MCI-Aβ+) than in Aβ- subjects (non-AD dementias, MCI-Aβ-) with good discrimination of Aβ+ from Aβ- subjects and prediction of Aβ status in MCI individuals. A positive correlation between plasma β-synuclein and Aβ PET was observed in multiple cortical regions across all lobes. Plasma β-synuclein demonstrated discriminative properties for Aβ PET positive and negative subjects. Our data underline that β-synuclein is not a direct marker of Aβ pathology and suggest different longitudinal dynamics of synaptic degeneration versus amyloid deposition across the AD continuum. Blood and CSF β-synuclein levels are higher in Aβ+ than in Aβ- subjects. Blood β-synuclein level correlates with amyloid PET positivity in multiple regions. Blood β-synuclein predicts Aβ status in MCI individuals.
Substances chimiques
beta-Synuclein
0
Amyloid beta-Peptides
0
Biomarkers
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4896-4907Subventions
Organisme : Swedish Foundation for Strategic Research (SSF)
ID : RB13-0192
Organisme : the Swedish Research Council
ID : 2017-02965
Organisme : the Swedish Research Council
ID : 2017-06086
Organisme : the Swedish Research Council
ID : 2020-01990
Organisme : the Swedish Research Council
ID : 2017-06105
Organisme : Region Stockholm-Karolinska Institutet regional agreement on medical training and clinical research
Organisme : the Swedish Brain Foundation
Organisme : the Swedish Alzheimer's Foundation
Organisme : Center for Innovative Medicine (CIMED) Region Stockholm
Organisme : EU Joint Programme-Neurodegenerative Diseases networks Genfi-Prox
ID : 01ED2008A
Organisme : German Federal Ministry of Education and Research
ID : 01GI1007A
Organisme : European Union
ID : 01EW2008
Organisme : Foundation of the state Baden-Württemberg
ID : D.3830
Informations de copyright
© 2023 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.
Références
de Wilde MC, Overk CR, Sijben JW, Masliah E. Meta-analysis of synaptic pathology in Alzheimer's disease reveals selective molecular vesicular machinery vulnerability. Alzheimers Dement. 2016;12:633-644. doi:10.1016/j.jalz.2015.12.005
Oeckl P, Metzger F, Nagl M, et al. Alpha-, beta-, and gamma-synuclein quantification in cerebrospinal fluid by multiple reaction monitoring reveals increased concentrations in Alzheimer's and creutzfeldt-jakob disease but no alteration in synucleinopathies. Mol Cell Proteomics. 2016;15:3126-3138. doi:10.1074/mcp.M116.059915
Oeckl P, Halbgebauer S, Anderl-Straub S, et al. Targeted mass spectrometry suggests beta-synuclein as synaptic blood marker in Alzheimer's disease. J Proteome Res. 2020;19:1310-1318. doi:10.1021/acs.jproteome.9b00824
Halbgebauer S, Oeckl P, Steinacker P, et al. Beta-synuclein in cerebrospinal fluid as an early diagnostic marker of Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2021;92:349-356. doi:10.1136/jnnp-2020-324306
Oeckl P, Anderl-Straub S, Danek A, et al. Relationship of serum beta-synuclein with blood biomarkers and brain atrophy. Alzheimers Dement. 2022. doi:10.1002/ALZ.12790
Zis P, Strydom A. Clinical aspects and biomarkers of Alzheimer's disease in Down syndrome. Free Radic Biol Med. 2018;114:3-9. doi:10.1016/J.FREERADBIOMED.2017.08.024
Oeckl P, Wagemann O, Halbgebauer S, et al. Serum beta-synuclein is higher in Down syndrome and precedes rise of pTau181. Ann Neurol. 2022;92:6-10. doi:10.1002/ana.26360
Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol. 2004;55:306-319. doi:10.1002/ANA.20009
Leuzy A, Savitcheva I, Chiotis K, et al. Clinical impact of [ 18 F]flutemetamol PET among memory clinic patients with an unclear diagnosis. Eur J Nucl Med Mol Imaging. 2019;46:1276-1286. doi:10.1007/S00259-019-04297-5
Rabinovici GD, Gatsonis C, Apgar C, et al. Association of amyloid positron emission tomography with subsequent change in clinical management among medicare beneficiaries with Mild Cognitive Impairment or dementia. JAMA. 2019;321:1286-1294. doi:10.1001/JAMA.2019.2000
Schindler SE, Bollinger JG, Ovod V, et al. High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosis. Neurology. 2019;93(17):e1647-e1659. doi:10.1212/WNL.0000000000008081
Karikari TK, Pascoal TA, Ashton NJ, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer's disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020;19:422-433. doi:10.1016/S1474-4422(20)30071-5
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303-308. doi:10.1001/ARCHNEUR.56.3.303
Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment-beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256:240-246. doi:10.1111/J.1365-2796.2004.01380.X
Jack CR, Bennett DA, Blennow K, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer's disease. Alzheimer Dement. 2018;14:535-562. doi:10.1016/j.jalz.2018.02.018
McKeith IG, Boeve BF, DIckson DW, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89:88-100. doi:10.1212/WNL.0000000000004058
Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51:1546-1554. doi:10.1212/WNL.51.6.1546
Román GC, Tatemichi TK, Erkinjuntti T, et al. Vascular dementia: diagnostic criteria for research studies. Neurology. 1993;43:250-260. doi:10.1212/WNL.43.2.250
Crary JF, Trojanowski JQ, Schneider JA, et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 2014;128:755-766. doi:10.1007/S00401-014-1349-0
Jack CR. PART and SNAP. Acta Neuropathol. 2014;128:773-776. doi:10.1007/S00401-014-1362-3
Iida MA, Farrell K, Walker JM, et al. Predictors of cognitive impairment in primary age-related tauopathy: an autopsy study. Acta Neuropathol Commun. 2021;9. doi:10.1186/S40478-021-01233-3
Oslin D, Atkinson RM, Smith DM, Hendrie H. Alcohol related dementia: proposed clinical criteria. Int J Geriatr Psychiatry. 1998;13:203-212. doi:10.1002/(sici)1099-1166(199804)13:4<203::aid-gps734>3.0.co;2-b
Garcia-Ptacek S, Cavallin L, Kåreholt I, et al. Subjective cognitive impairment subjects in our clinical practice. Dement Geriatr Cogn Dis Extra. 2014;4:419-430. doi:10.1159/000366270
Lilja J, Leuzy A, Chiotis K, Savitcheva I, Sörensen J, Nordberg A. Spatial normalization of 18 F-Flutemetamol PET images using an adaptive principal-component template. J Nucl Med. 2019;60:285-291. doi:10.2967/JNUMED.118.207811
Vandenberghe R, Van Laere K, Ivanoiu A, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68:319-329. doi:10.1002/ANA.22068
Bucci M, Savitcheva I, Farrar G, et al. A multisite analysis of the concordance between visual image interpretation and quantitative analysis of [18 F]flutemetamol amyloid PET images. Eur J Nucl Med Mol Imaging. 2021;48:2183-2199. doi:10.1007/S00259-021-05311-5
Thurfjell L, Lilja J, Lundqvist R, et al. Automated quantification of 18F-flutemetamol PET activity for categorizing scans as negative or positive for brain amyloid: concordance with visual image reads. J Nucl Med. 2014;55:1623-1628. doi:10.2967/JNUMED.114.142109
Iaccarino L, R LaJoie, Koeppe R, et al. rPOP: robust PET-only processing of community acquired heterogeneous amyloid-PET data. Neuroimage. 2022;246:118775. doi:10.1016/J.NEUROIMAGE.2021.118775
Makris N, Goldstein JM, Kennedy D, et al. Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr Res. 2006;83:155-171. doi:10.1016/J.SCHRES.2005.11.020
Frazier JA, Chiu S, Breeze JL, et al. Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am J Psychiatry. 2005;162:1256-1265. doi:10.1176/APPI.AJP.162.7.1256
Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968-980. doi:10.1016/J.NEUROIMAGE.2006.01.021
Goldstein JM, Seidman LJ, Makris N, et al. Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability. Biol Psychiatry. 2007;61:935-945. doi:10.1016/J.BIOPSYCH.2006.06.027
Pereira JB, Janelidze S, Ossenkoppele R, et al. Untangling the association of amyloid-β and tau with synaptic and axonal loss in Alzheimer's disease. Brain. 2021;144:310-324. doi:10.1093/BRAIN/AWAA395
Jack CR, Lowe VJ, Weigand SD, et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease. Brain. 2009;132:1355-1365. doi:10.1093/BRAIN/AWP062
O'Dell RS, Mecca AP, Chen MK, et al. Association of Aβ deposition and regional synaptic density in early Alzheimer's disease: a PET imaging study with [ 11 C]UCB-J. Alzheimers Res Ther. 2021;13:11. doi:10.1186/S13195-020-00742-Y
Mattsson N, Palmqvist S, Stomrud E, Vogel J, Hansson O. Staging β-Amyloid pathology with amyloid positron emission tomography. JAMA Neurol. 2019;76:1319-1329. doi:10.1001/JAMANEUROL.2019.2214
Leuzy A, Chiotis K, Lemoine L, et al. Tau PET imaging in neurodegenerative tauopathies-still a challenge. Mol Psychiatry. 2019;24:1112-1134. doi:10.1038/S41380-018-0342-8
Bucci M, Chiotis K, Nordberg A. Alzheimer's disease profiled by fluid and imaging markers: tau PET best predicts cognitive decline. Mol Psychiatry. 2021;26:5888-5898. doi:10.1038/S41380-021-01263-2
Chiotis K, Savitcheva I, Poulakis K, et al. [ 18 F]THK5317 imaging as a tool for predicting prospective cognitive decline in Alzheimer's disease. Mol Psychiatry. 2021;26:5875-5887. doi:10.1038/S41380-020-0815-4
Mecca AP, Chen MK, O'Dell RS, et al. In vivo measurement of widespread synaptic loss in Alzheimer's disease with SV2A PET. Alzheimers Dement. 2020;16:974-982. doi:10.1002/ALZ.12097
Oeckl P, Halbgebauer S, Anderl-Straub S, et al. Glial fibrillary acidic protein in serum is increased in Alzheimer's disease and correlates with cognitive impairment. J Alzheimer's Dis. 2019;67:481-488. doi:10.3233/JAD-180325
Milà-Alomà M, Ashton NJ, Shekari M, et al. Plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer's disease. Nat Med. 2022;28:1797-1801.