Ultra-high-resolution observations of persistent null-point reconnection in the solar corona.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
13 Apr 2023
Historique:
received: 14 12 2022
accepted: 30 03 2023
medline: 14 4 2023
entrez: 13 4 2023
pubmed: 14 4 2023
Statut: epublish

Résumé

Magnetic reconnection is a key mechanism involved in solar eruptions and is also a prime possibility to heat the low corona to millions of degrees. Here, we present ultra-high-resolution extreme ultraviolet observations of persistent null-point reconnection in the corona at a scale of about 390 km over one hour observations of the Extreme-Ultraviolet Imager on board Solar Orbiter spacecraft. The observations show formation of a null-point configuration above a minor positive polarity embedded within a region of dominant negative polarity near a sunspot. The gentle phase of the persistent null-point reconnection is evidenced by sustained point-like high-temperature plasma (about 10 MK) near the null-point and constant outflow blobs not only along the outer spine but also along the fan surface. The blobs appear at a higher frequency than previously observed with an average velocity of about 80 km s

Identifiants

pubmed: 37055427
doi: 10.1038/s41467-023-37888-w
pii: 10.1038/s41467-023-37888-w
pmc: PMC10102217
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2107

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2023. The Author(s).

Références

Priest, E. & Forbes, T. Magnetic reconnection (Cambridge University Press, 2000).
Shibata, K. Evidence of magnetic reconnection in solar flares and a unified model of flares. Astrophys. Space Sci. 264, 129–144 (1999).
doi: 10.1023/A:1002413214356
Lin, H., Penn, M. J. & Tomczyk, S. A new precise measurement of the coronal magnetic field strength. Astrophys. J. Lett. 541, L83–L86 (2000).
doi: 10.1086/312900
Cheng, X. et al. Observations of turbulent magnetic reconnection within a solar current sheet. Astrophys. J. 866, 64 (2018).
doi: 10.3847/1538-4357/aadd16
Qiu, J., Wang, H., Cheng, C. Z. & Gary, D. E. Magnetic reconnection and mass acceleration in flare-coronal mass ejection events. Astrophys. J. 604, 900–905 (2004).
doi: 10.1086/382122
Cheng, X., Zhang, J., Liu, Y. & Ding, M. D. Observing flux rope formation during the impulsive phase of a solar eruption. Astrophys. J. Lett. 732, L25 (2011).
doi: 10.1088/2041-8205/732/2/L25
Xing, C., Cheng, X. & Ding, M. D. Evolution of the toroidal flux of CME flux ropes during eruption. Innovation 1, 100059 (2020).
pubmed: 34557723 pmcid: 8454547
Sturrock, P. A. Model of the high-energy phase of solar flares. Nat. (Lond.) 211, 695–697 (1966).
doi: 10.1038/211695a0
Kopp, R. A. & Pneuman, G. W. Magnetic reconnection in the corona and the loop prominence phenomenon. Sol. Phys. 50, 85–98 (1976).
doi: 10.1007/BF00206193
Yokoyama, T., Akita, K., Morimoto, T., Inoue, K. & Newmark, J. Clear evidence of reconnection inflow of a solar flare. Astrophys. J. Lett. 546, L69–L72 (2001).
doi: 10.1086/318053
Savage, S. L. & McKenzie, D. E. Quantitative examination of a large sample of supra-arcade downflows in eruptive solar flares. Astrophys. J. 730, 98 (2011).
doi: 10.1088/0004-637X/730/2/98
Takasao, S., Asai, A., Isobe, H. & Shibata, K. Simultaneous observation of reconnection inflow and outflow associated with the 2010 August 18 solar flare. Astrophys. J. Lett. 745, L6 (2012).
doi: 10.1088/2041-8205/745/1/L6
Chen, B. et al. Particle acceleration by a solar flare termination shock. Science 350, 1238–1242 (2015).
pubmed: 26785486 doi: 10.1126/science.aac8467
Su, Y. et al. Imaging coronal magnetic-field reconnection in a solar flare. Nat. Phys. 9, 489–493 (2013).
doi: 10.1038/nphys2675
Sun, J. Q. et al. Extreme ultraviolet imaging of three-dimensional magnetic reconnection in a solar eruption. Nat. Commun. 6, 7598 (2015).
pubmed: 26113464 doi: 10.1038/ncomms8598
Furth, H. P., Killeen, J. & Rosenbluth, M. N. Finite-resistivity instabilities of a sheet pinch. Phys. Fluids 6, 459–484 (1963).
doi: 10.1063/1.1706761
Lazarian, A. & Vishniac, E. T. Reconnection in a weakly stochastic field. Astrophys. J. 517, 700–718 (1999).
doi: 10.1086/307233
Shibata, K. & Tanuma, S. Plasmoid-induced-reconnection and fractal reconnection. Earth Planets Space 53, 473–482 (2001).
doi: 10.1186/BF03353258
Wang, Y., Cheng, X., Ding, M. & Lu, Q. Annihilation of magnetic islands at the top of solar flare loops. Astrophys. J. 923, 227 (2021).
doi: 10.3847/1538-4357/ac3142
Wang, Y., Cheng, X., Ren, Z. & Ding, M. Current-sheet oscillations caused by kelvin-helmholtz instability at the loop top of solar flares. Astrophys. J. Lett. 931, L32 (2022).
Ni, L. & Lukin, V. S. Onset of secondary instabilities and plasma heating during magnetic reconnection in strongly magnetized regions of the low solar atmosphere. Astrophys. J. 868, 144 (2018).
doi: 10.3847/1538-4357/aaeb97
Peter, H., Huang, Y. M., Chitta, L. P. & Young, P. R. Plasmoid-mediated reconnection in solar UV bursts. Astron. Astrophys. 628, A8 (2019).
doi: 10.1051/0004-6361/201935820
Chitta, L. P. & Lazarian, A. Onset of turbulent fast magnetic reconnection observed in the solar atmosphere. Astrophys. J. Lett. 890, L2 (2020).
doi: 10.3847/2041-8213/ab6f0a
Liu, Z. et al. New vacuum solar telescope and observations with high resolution. Res. Astron. Astrophys. 14, 705–718 (2014).
doi: 10.1088/1674-4527/14/6/009
Yang, S., Zhang, J. & Xiang, Y. Magnetic reconnection between small-scale loops observed with the new vacuum solar telescope. Astrophys. J. Lett. 798, L11 (2015).
doi: 10.1088/2041-8205/798/1/L11
Yan, X. et al. Fast plasmoid-mediated reconnection in a solar flare. Nat. Commun. 13, 640 (2022).
pubmed: 35110575 pmcid: 8810921 doi: 10.1038/s41467-022-28269-w
Parker, E. N. Nanoflares and the solar X-ray corona. Astrophys. J. 330, 474 (1988).
doi: 10.1086/166485
Klimchuk, J. A. On solving the coronal heating problem. Sol. Phys. 234, 41–77 (2006).
doi: 10.1007/s11207-006-0055-z
Cirtain, J. W. et al. Energy release in the solar corona from spatially resolved magnetic braids. Nat. (Lond.) 493, 501–503 (2013).
doi: 10.1038/nature11772
Pontin, D. I. et al. Observable signatures of energy release in braided coronal loops. Astrophys. J. 837, 108 (2017).
doi: 10.3847/1538-4357/aa5ff9
Huang, Z. et al. Magnetic braids in eruptions of a spiral structure in the solar atmosphere. Astrophys. J. 854, 80 (2018).
doi: 10.3847/1538-4357/aaa9ba
Martínez Pillet, V. et al. The imaging magnetograph eXperiment (IMaX) for the sunrise balloon-borne solar observatory. Sol. Phys. 268, 57–102 (2011).
doi: 10.1007/s11207-010-9644-y
Solanki, S. K. et al. SUNRISE: instrument, mission, data, and first results. Astrophys. J. Lett. 723, L127–L133 (2010).
doi: 10.1088/2041-8205/723/2/L127
Chitta, L. P. et al. Solar coronal loops associated with small-scale mixed polarity surface magnetic fields. Astrophys. J. Suppl. Ser. 229, 4 (2017).
doi: 10.3847/1538-4365/229/1/4
Priest, E. R., Chitta, L. P. & Syntelis, P. A cancellation nanoflare model for solar chromospheric and coronal heating. Astrophys. J. Lett. 862, L24 (2018).
doi: 10.3847/2041-8213/aad4fc
Syntelis, P. & Priest, E. R. Chromospheric and coronal heating and jet acceleration due to reconnection driven by flux cancellation. II. Cancellation of two magnetic polarities of unequal flux. Astron. Astrophys. 649, A101 (2021).
doi: 10.1051/0004-6361/202140474
Rochus, P. et al. The solar orbiter EUI instrument: the extreme ultraviolet imager. Astron. Astrophys. 642, A8 (2020).
doi: 10.1051/0004-6361/201936663
Müller, D. et al. The solar orbiter mission. Science overview. Astron. Astrophys. 642, A1 (2020).
doi: 10.1051/0004-6361/202038467
Schou, J. et al. Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Sol. Phys. 275, 229–259 (2012).
doi: 10.1007/s11207-011-9842-2
Pontin, D. I., Priest, E. R. & Galsgaard, K. On the nature of reconnection at a solar coronal null point above a separatrix dome. Astrophys. J. 774, 154 (2013).
doi: 10.1088/0004-637X/774/2/154
Chitta, L. P., Peter, H., Young, P. R. & Huang, Y. M. Compact solar UV burst triggered in a magnetic field with a fan-spine topology. Astron. Astrophys. 605, A49 (2017).
doi: 10.1051/0004-6361/201730830
Joshi, R. et al. Multi-thermal atmosphere of a mini-solar flare during magnetic reconnection observed with IRIS. Astron. Astrophys. 645, A80 (2021).
doi: 10.1051/0004-6361/202039229
Kumar, P. et al. Multiwavelength study of equatorial coronal-hole jets. Astrophys. J. 873, 93 (2019).
doi: 10.3847/1538-4357/ab04af
Kumar, P., Karpen, J. T., Antiochos, S. K., Wyper, P. F. & DeVore, C. R. First detection of plasmoids from breakout reconnection on the sun. Astrophys. J. Lett. 885, L15 (2019).
doi: 10.3847/2041-8213/ab45f9
Masson, S., Pariat, E., Aulanier, G. & Schrijver, C. J. The nature of flare ribbons in coronal null-point topology. Astrophys. J. 700, 559–578 (2009).
doi: 10.1088/0004-637X/700/1/559
Sun, X. et al. Hot spine loops and the nature of a late-phase solar flare. Astrophys. J. 778, 139 (2013).
doi: 10.1088/0004-637X/778/2/139
De Pontieu, B. et al. The interface region imaging spectrograph (IRIS). Sol. Phys. 289, 2733–2779 (2014).
doi: 10.1007/s11207-014-0485-y
Lemen, J. R. et al. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Sol. Phys. 275, 17–40 (2012).
doi: 10.1007/s11207-011-9776-8
Mandal, S. et al. A highly dynamic small-scale jet in a polar coronal hole. Astron. Astrophys. 664, A28 (2022).
Cheng, X. et al. Initiation and early kinematic evolution of solar eruptions. Astrophys. J. 894, 85 (2020).
doi: 10.3847/1538-4357/ab886a
Moore, R. L., Cirtain, J. W., Sterling, A. C. & Falconer, D. A. Dichotomy of solar coronal jets: standard jets and blowout jets. Astrophys. J. 720, 757–770 (2010).
doi: 10.1088/0004-637X/720/1/757
Sterling, A. C., Moore, R. L., Falconer, D. A. & Adams, M. Small-scale filament eruptions as the driver of X-ray jets in solar coronal holes. Nat. (Lond.) 523, 437–440 (2015).
doi: 10.1038/nature14556
Sterling, A. C. et al. Minifilament eruptions that drive coronal jets in a solar active region. Astrophys. J. 821, 100 (2016).
doi: 10.3847/0004-637X/821/2/100
Zhu, X., Wang, H., Cheng, X. & Huang, C. A solar blowout jet caused by the eruption of a magnetic flux rope. Astrophys. J. Lett. 844, L20 (2017).
doi: 10.3847/2041-8213/aa8033
Pariat, E., Antiochos, S. K. & DeVore, C. R. A model for solar polar jets. Astrophys. J. 691, 61–74 (2009).
doi: 10.1088/0004-637X/691/1/61
Wyper, P. F., DeVore, C. R. & Antiochos, S. K. A breakout model for solar coronal jets with filaments. Astrophys. J. 852, 98 (2018).
doi: 10.3847/1538-4357/aa9ffc
Kumar, P. et al. Evidence for the magnetic breakout model in an equatorial coronal-hole jet. Astrophys. J. 854, 155 (2018).
pubmed: 33867543 pmcid: 8051205 doi: 10.3847/1538-4357/aaab4f
Cheung, M. C. M. et al. Probing the physics of the solar atmosphere with the multi-slit solar explorer (MUSE). II. flares and eruptions. Astrophys. J. 926, 53 (2022).
doi: 10.3847/1538-4357/ac4223
Harvey, K. & Harvey, J. Observations of moving magnetic features near sunspots. Sol. Phys. 28, 61–71 (1973).
doi: 10.1007/BF00152912
Zhang, J., Solanki, S. K. & Wang, J. On the nature of moving magnetic feature pairs around sunspots. Astron. Astrophys. 399, 755–761 (2003).
doi: 10.1051/0004-6361:20021807
Hagenaar, H. J. & Shine, R. A. Moving magnetic features around sunspots. Astrophys. J. 635, 659–669 (2005).
doi: 10.1086/497367
Titov, V. S., Priest, E. R. & Demoulin, P. Conditions for the appearance of “bald patches” at the solar surface. Astron. Astrophys. 276, 564 (1993).
Yang, K., Guo, Y. & Ding, M. D. On the 2012 october 23 circular ribbon flare: emission features and magnetic topology. Astrophys. J. 806, 171 (2015).
doi: 10.1088/0004-637X/806/2/171
Smitha, H. N., Chitta, L. P., Wiegelmann, T. & Solanki, S. K. Observations of solar chromospheric heating at sub-arcsec spatial resolution. Astron. Astrophys. 617, A128 (2018).
doi: 10.1051/0004-6361/201833276
Samanta, T. et al. Generation of solar spicules and subsequent atmospheric heating. Science 366, 890–894 (2019).
pubmed: 31727839 doi: 10.1126/science.aaw2796
Chitta, L. P., Peter, H., Priest, E. R. & Solanki, S. K. Impulsive coronal heating during the interaction of surface magnetic fields in the lower solar atmosphere. Astron. Astrophys. 644, A130 (2020).
doi: 10.1051/0004-6361/202039099
Longcope, D. W. & Parnell, C. E. The number of magnetic null points in the quiet sun corona. Sol. Phys. 254, 51–75 (2009).
doi: 10.1007/s11207-008-9281-x
Longcope, D., Parnell, C. & DeForest, C. The density of coronal null points from hinode and MDI. https://arxiv.org/abs/0901.0865 (2009).
Schrijver, C. J. & Title, A. M. The topology of a mixed-polarity potential field, and inferences for the heating of the quiet solar corona. Sol. Phys. 207, 223–240 (2002).
doi: 10.1023/A:1016295516408
Withbroe, G. L. & Noyes, R. W. Mass and energy flow in the solar chromosphere and corona. Annu. Rev. Astron. Astrophys. 15, 363–387 (1977).
doi: 10.1146/annurev.aa.15.090177.002051
Wyper, P. F., DeVore, C. R. & Antiochos, S. K. Numerical simulation of helical jets at active region peripheries. Mon. Not. Roy. Astron. Soc. 490, 3679–3690 (2019).
doi: 10.1093/mnras/stz2674
Antiochos, S. K., DeVore, C. R. & Klimchuk, J. A. A model for solar coronal mass ejections. Astrophys. J. 510, 485–493 (1999).
doi: 10.1086/306563
Chitta, L. P. et al. Capturing transient plasma flows and jets in the solar corona. Astron. Astrophys. 656, L13 (2021).
doi: 10.1051/0004-6361/202141683
Pesnell, W. D., Thompson, B. J. & Chamberlin, P. C. The solar dynamics observatory (SDO). Sol. Phys. 275, 3–15 (2012).
doi: 10.1007/s11207-011-9841-3
Cheng, X., Zhang, J., Saar, S. H. & Ding, M. D. Differential emission measure analysis of multiple structural components of coronal mass ejections in the inner corona. Astrophys. J. 761, 62 (2012).
doi: 10.1088/0004-637X/761/1/62
Hannah, I. G. & Kontar, E. P. Differential emission measures from the regularized inversion of Hinode and SDO data. Astron. Astrophys. 539, A146 (2012).
doi: 10.1051/0004-6361/201117576
Cheung, M. C. M. et al. Thermal diagnostics with the atmospheric imaging assembly on board the solar dynamics observatory: a validated method for differential emission measure inversions. Astrophys. J. 807, 143 (2015).
doi: 10.1088/0004-637X/807/2/143
Chen, J. et al. Extreme-ultraviolet late phase of solar flares. Astrophys. J. 890, 158 (2020).
doi: 10.3847/1538-4357/ab6def
Masson, S. et al. Flux rope, hyperbolic flux tube, and late extreme ultraviolet phases in a non-eruptive circular-ribbon flare. Astron. Astrophys. 604, A76 (2017).
doi: 10.1051/0004-6361/201629654
Titov, V. S., Hornig, G. & Démoulin, P. Theory of magnetic connectivity in the solar corona. J. Geophys. Res. 107, 1164 (2002).
Zhang, P., Chen, J., Liu, R. & Wang, C. FastQSL: a fast computation method for quasi-separatrix layers. Astrophys. J. 937, 26 (2022).
doi: 10.3847/1538-4357/ac8d61

Auteurs

X Cheng (X)

School of Astronomy and Space Science, Nanjing University, 210093, Nanjing, China. xincheng@nju.edu.cn.
Max Planck Institute for Solar System Research, 37077, Göttingen, Germany. xincheng@nju.edu.cn.
Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, 210093, Nanjing, China. xincheng@nju.edu.cn.

E R Priest (ER)

School of Mathematics and Statistics, University of St. Andrews, Fife, KY16 9SS, Scotland, UK.

H T Li (HT)

School of Astronomy and Space Science, Nanjing University, 210093, Nanjing, China.
Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, 210093, Nanjing, China.

J Chen (J)

School of Astronomy and Space Science, Nanjing University, 210093, Nanjing, China.
Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, 210093, Nanjing, China.

G Aulanier (G)

Sorbonne Université, Observatoire de Paris - PSL, École Polytechnique, IP Paris, CNRS, Laboratory for Plasma Physics (LPP), 4 place Jussieu, 75005, Paris, France.
Rosseland Centre for Solar Physics, Institute for Theoretical Astrophysics, Universitetet i Oslo, P.O. Box 1029, Blindern, 0315, Oslo, Norway.

L P Chitta (LP)

Max Planck Institute for Solar System Research, 37077, Göttingen, Germany.

Y L Wang (YL)

School of Astronomy and Space Science, Nanjing University, 210093, Nanjing, China.
Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, 210093, Nanjing, China.

H Peter (H)

Max Planck Institute for Solar System Research, 37077, Göttingen, Germany.

X S Zhu (XS)

State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, China.

C Xing (C)

School of Astronomy and Space Science, Nanjing University, 210093, Nanjing, China.
Sorbonne Université, Observatoire de Paris - PSL, École Polytechnique, IP Paris, CNRS, Laboratory for Plasma Physics (LPP), 4 place Jussieu, 75005, Paris, France.

M D Ding (MD)

School of Astronomy and Space Science, Nanjing University, 210093, Nanjing, China.
Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, 210093, Nanjing, China.

S K Solanki (SK)

Max Planck Institute for Solar System Research, 37077, Göttingen, Germany.

D Berghmans (D)

Solar-Terrestrial Centre of Excellence - SIDC, Royal Observatory of Belgium, Ringlaan -3- Av. Circulaire, 1180, Brussels, Belgium.

L Teriaca (L)

Max Planck Institute for Solar System Research, 37077, Göttingen, Germany.

R Aznar Cuadrado (R)

Max Planck Institute for Solar System Research, 37077, Göttingen, Germany.

A N Zhukov (AN)

Solar-Terrestrial Centre of Excellence - SIDC, Royal Observatory of Belgium, Ringlaan -3- Av. Circulaire, 1180, Brussels, Belgium.
Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119992, Moscow, Russia.

Y Guo (Y)

School of Astronomy and Space Science, Nanjing University, 210093, Nanjing, China.
Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, 210093, Nanjing, China.

D Long (D)

Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK.

L Harra (L)

PMOD/WRC, Dorfstrasse 33, CH-7260, Davos Dorf, Switzerland.
ETH-Zürich, Wolfang-Pauli-Strasse 27, HIT J 22.4, 8093, Zürich, Switzerland.

P J Smith (PJ)

Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK.

L Rodriguez (L)

Solar-Terrestrial Centre of Excellence - SIDC, Royal Observatory of Belgium, Ringlaan -3- Av. Circulaire, 1180, Brussels, Belgium.

C Verbeeck (C)

Solar-Terrestrial Centre of Excellence - SIDC, Royal Observatory of Belgium, Ringlaan -3- Av. Circulaire, 1180, Brussels, Belgium.

K Barczynski (K)

ETH-Zürich, Wolfang-Pauli-Strasse 27, HIT J 22.4, 8093, Zürich, Switzerland.

S Parenti (S)

Institut d'Astrophysique Spatiale, Université Paris-Saclay, 91405, Orsay Cedex, France.

Classifications MeSH