Predictive biomarkers of immunotherapy response with pharmacological applications in solid tumors.
ROC curve
drug resistance
druggable genes
gene expression
immune checkpoint inhibitors
immunotherapy
Journal
Acta pharmacologica Sinica
ISSN: 1745-7254
Titre abrégé: Acta Pharmacol Sin
Pays: United States
ID NLM: 100956087
Informations de publication
Date de publication:
Sep 2023
Sep 2023
Historique:
received:
06
11
2022
accepted:
14
03
2023
medline:
31
8
2023
pubmed:
14
4
2023
entrez:
13
4
2023
Statut:
ppublish
Résumé
Immune-checkpoint inhibitors show promising effects in the treatment of multiple tumor types. Biomarkers are biological indicators used to select patients for a systemic anticancer treatment, but there are only a few clinically useful biomarkers such as PD-L1 expression and tumor mutational burden, which can be used to predict immunotherapy response. In this study, we established a database consisting of both gene expression and clinical data to identify biomarkers of response to anti-PD-1, anti-PD-L1, and anti-CTLA-4 immunotherapies. A GEO screening was executed to identify datasets with simultaneously available clinical response and transcriptomic data regardless of cancer type. The screening was restricted to the studies involving administration of anti-PD-1 (nivolumab, pembrolizumab), anti-PD-L1 (atezolizumab, durvalumab) or anti-CTLA-4 (ipilimumab) agents. Receiver operating characteristic (ROC) analysis and Mann-Whitney test were executed across all genes to identify features related to therapy response. The database consisted of 1434 tumor tissue samples from 19 datasets with esophageal, gastric, head and neck, lung, and urothelial cancers, plus melanoma. The strongest druggable gene candidates linked to anti-PD-1 resistance were SPIN1 (AUC = 0.682, P = 9.1E-12), SRC (AUC = 0.667, P = 5.9E-10), SETD7 (AUC = 0.663, P = 1.0E-09), FGFR3 (AUC = 0.657, P = 3.7E-09), YAP1 (AUC = 0.655, P = 6.0E-09), TEAD3 (AUC = 0.649, P = 4.1E-08) and BCL2 (AUC = 0.634, P = 9.7E-08). In the anti-CTLA-4 treatment cohort, BLCAP (AUC = 0.735, P = 2.1E-06) was the most promising gene candidate. No therapeutically relevant target was found to be predictive in the anti-PD-L1 cohort. In the anti-PD-1 group, we were able to confirm the significant correlation with survival for the mismatch-repair genes MLH1 and MSH6. A web platform for further analysis and validation of new biomarker candidates was set up and available at https://www.rocplot.com/immune . In summary, a database and a web platform were established to investigate biomarkers of immunotherapy response in a large cohort of solid tumor samples. Our results could help to identify new patient cohorts eligible for immunotherapy.
Identifiants
pubmed: 37055532
doi: 10.1038/s41401-023-01079-6
pii: 10.1038/s41401-023-01079-6
pmc: PMC10462766
doi:
Substances chimiques
Ipilimumab
0
Biomarkers, Tumor
0
SETD7 protein, human
EC 2.1.1.43
Histone-Lysine N-Methyltransferase
EC 2.1.1.43
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1879-1889Informations de copyright
© 2023. The Author(s).
Références
Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun. 2020;11:3801.
pmcid: 7393098
doi: 10.1038/s41467-020-17670-y
pubmed: 32732879
Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271:1734–6.
doi: 10.1126/science.271.5256.1734
pubmed: 8596936
Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, et al. CTLA-4 can function as a negative regulator of T-cell activation. Immunity. 1994;1:405–13.
doi: 10.1016/1074-7613(94)90071-X
pubmed: 7882171
Twomey JD, Zhang B. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J. 2021;23:39.
doi: 10.1208/s12248-021-00574-0
pubmed: 33677681
Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN Guidelines with the level of evidence. Cancers. 2020;12:E738.
doi: 10.3390/cancers12030738
Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.
pmcid: 3549297
doi: 10.1056/NEJMoa1003466
pubmed: 20525992
McDermott D, Haanen J, Chen TT, Lorigan P, O’Day S. MDX010-20 investigators. Efficacy and safety of ipilimumab in metastatic melanoma patients surviving more than 2 years following treatment in a phase III trial (MDX010-20). Ann Oncol. 2013;24:2694–8.
doi: 10.1093/annonc/mdt291
pubmed: 23942774
Wolchok JD, Neyns B, Linette G, Negrier S, Lutzky J, Thomas L, et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 2010;11:155–64.
doi: 10.1016/S1470-2045(09)70334-1
pubmed: 20004617
Hammers HJ, Plimack ER, Infante JR, Rini BI, McDermott DF, Lewis LD, et al. Safety and efficacy of nivolumab in combination with Ipilimumab in metastatic renal cell carcinoma: The CheckMate 016 Study. J Clin Oncol. 2017;35:3851–8.
pmcid: 7587408
doi: 10.1200/JCO.2016.72.1985
pubmed: 28678668
Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melichar B, Choueiri TK, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378:1277–90.
pmcid: 5972549
doi: 10.1056/NEJMoa1712126
pubmed: 29562145
Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Durable clinical benefit with nivolumab Plus lpilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 2018;36:773–9.
doi: 10.1200/JCO.2017.76.9901
pubmed: 29355075
Yau T, Kang YK, Kim TY, El-Khoueiry AB, Santoro A, Sangro B, et al. Efficacy and safety of nivolumab plus ipilimumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib: The CheckMate 040 randomized clinical trial. JAMA Oncol. 2020;6:e204564.
pmcid: 7530824
doi: 10.1001/jamaoncol.2020.4564
pubmed: 33001135
Baas P, Scherpereel A, Nowak AK, Fujimoto N, Peters S, Tsao AS, et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 trial. Lancet. 2021;397:375–86.
doi: 10.1016/S0140-6736(20)32714-8
pubmed: 33485464
Paz-Ares L, Ciuleanu TE, Cobo M, Schenker M, Zurawski B, Menezes J, et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:198–211.
doi: 10.1016/S1470-2045(20)30641-0
pubmed: 33476593
Agarwala SS, Ribas A. Current experience with CTLA4-blocking monoclonal antibodies for the treatment of solid tumors. J Immunother. 2010;33:557–69.
doi: 10.1097/CJI.0b013e3181dcd260
pubmed: 20551840
Janjigian YY, Shitara K, Moehler M, Garrido M, Salman P, Shen L, et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet. 2021;398:27–40.
pmcid: 8436782
doi: 10.1016/S0140-6736(21)00797-2
pubmed: 34102137
Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384:1109–17.
doi: 10.1016/S0140-6736(14)60958-2
pubmed: 25034862
Schmid P, Cortes J, Dent R, Pusztai L, McArthur H, Kümmel S, et al. Event-free survival with Pembrolizumab in early triple-negative breast cancer. N Engl J Med. 2022;386:556–67.
doi: 10.1056/NEJMoa2112651
pubmed: 35139274
Grob JJ, Gonzalez R, Basset-Seguin N, Vornicova O, Schachter J, Joshi A, et al. Pembrolizumab monotherapy for recurrent or metastatic cutaneous squamous cell carcinoma: a single-arm phase II Trial (KEYNOTE-629). J Clin Oncol. 2020;38:2916–25.
pmcid: 7460151
doi: 10.1200/JCO.19.03054
pubmed: 32673170
Hughes BGM, Munoz-Couselo E, Mortier L, Bratland Å, Gutzmer R, Roshdy O, et al. Pembrolizumab for locally advanced and recurrent/metastatic cutaneous squamous cell carcinoma (KEYNOTE-629 study): an open-label, nonrandomized, multicenter, phase II trial. Ann Oncol. 2021;32:1276–85.
doi: 10.1016/j.annonc.2021.07.008
pubmed: 34293460
O’Malley DM, Bariani GM, Cassier PA, Marabelle A, Hansen AR, De Jesus Acosta A, et al. Pembrolizumab in patients with microsatellite instability-high advanced endometrial cancer: results from the KEYNOTE-158 Study. J Clin Oncol. 2022;40:752–61.
pmcid: 8887941
doi: 10.1200/JCO.21.01874
pubmed: 34990208
Kudo M, Lim HY, Cheng AL, Chao Y, Yau T, Ogasawara S, et al. Pembrolizumab as second-line therapy for advanced hepatocellular carcinoma: a subgroup analysis of Asian patients in Phase 3 KEYNOTE-240 Trial. Liver Cancer. 2021;10:275–84.
pmcid: 8237794
doi: 10.1159/000515553
pubmed: 34239813
Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020;21:1353–65.
doi: 10.1016/S1470-2045(20)30445-9
pubmed: 32919526
Oaknin A, Tinker AV, Gilbert L, Samouëlian V, Mathews C, Brown J, et al. Clinical activity and safety of the anti-programmed death 1 monoclonal antibody Dostarlimab for patients with recurrent or advanced mismatch repair-deficient endometrial cancer: A nonrandomized Phase 1 clinical trial. JAMA Oncol. 2020;6:1766–72.
doi: 10.1001/jamaoncol.2020.4515
pubmed: 33001143
Oaknin A, Gilbert L, Tinker AV, Brown J, Mathews C, Press J, et al. Safety and antitumor activity of dostarlimab in patients with advanced or recurrent DNA mismatch repair deficient/microsatellite instability-high (dMMR/MSI-H) or proficient/stable (MMRp/MSS) endometrial cancer: interim results from GARNET-a phase I, single-arm study. J Immunother Cancer. 2022;10:e003777.
pmcid: 8785197
doi: 10.1136/jitc-2021-003777
pubmed: 35064011
Goldman JW, Dvorkin M, Chen Y, Reinmuth N, Hotta K, Trukhin D, et al. Durvalumab, with or without tremelimumab, plus platinum-etoposide versus platinum-etoposide alone in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): updated results from a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2021;22:51–65.
doi: 10.1016/S1470-2045(20)30539-8
pubmed: 33285097
Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, et al. Atezolizumab plus Bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382:1894–905.
doi: 10.1056/NEJMoa1915745
pubmed: 32402160
Gutzmer R, Stroyakovskiy D, Gogas H, Robert C, Lewis K, Protsenko S, et al. Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAFV600 mutation-positive melanoma (IMspire150): primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2020;395:1835–44.
doi: 10.1016/S0140-6736(20)30934-X
pubmed: 32534646
Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. 2018;362:eaar3593.
pmcid: 6718162
doi: 10.1126/science.aar3593
pubmed: 30309915
Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K, et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med. 2018;24:1449–58.
doi: 10.1038/s41591-018-0101-z
pubmed: 30013197
Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGF-β attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544–8.
pmcid: 6028240
doi: 10.1038/nature25501
pubmed: 29443960
Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell. 2017;171:934–949.e16.
pmcid: 5685550
doi: 10.1016/j.cell.2017.09.028
pubmed: 29033130
Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019;25:477–86.
pmcid: 6408961
doi: 10.1038/s41591-018-0337-7
pubmed: 30742122
Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350:207–11.
pmcid: 5054517
doi: 10.1126/science.aad0095
pubmed: 26359337
Hwang S, Kwon AY, Jeong JY, Kim S, Kang H, Park J, et al. Immune gene signatures for predicting durable clinical benefit of anti-PD-1 immunotherapy in patients with non-small cell lung cancer. Sci Rep. 2020;10:643.
pmcid: 6971301
doi: 10.1038/s41598-019-57218-9
pubmed: 31959763
Prat A, Navarro A, Paré L, Reguart N, Galván P, Pascual T, et al. Immune-related gene expression profiling after PD-1 blockade in non-small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res. 2017;77:3540–50.
doi: 10.1158/0008-5472.CAN-16-3556
pubmed: 28487385
Liu D, Schilling B, Liu D, Sucker A, Livingstone E, Jerby-Arnon L, et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat Med. 2019;25:1916–27.
pmcid: 6898788
doi: 10.1038/s41591-019-0654-5
pubmed: 31792460
Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47:D419–26.
doi: 10.1093/nar/gky1038
pubmed: 30407594
Menyhart O, Weltz B, Győrffy B. MultipleTesting.com: A tool for life science researchers for multiple hypothesis testing correction. PLoS One. 2021;16:e0245824.
pmcid: 8189492
doi: 10.1371/journal.pone.0245824
pubmed: 34106935
Eddy JA, Thorsson V, Lamb AE, Gibbs DL, Heimann C, Yu JX, et al. CRI iAtlas: an interactive portal for immuno-oncology research. F1000Res. 2020;9:1028.
pmcid: 7658727
doi: 10.12688/f1000research.25141.1
pubmed: 33214875
Litchfield K, Reading JL, Puttick C, Thakkar K, Abbosh C, Bentham R, et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell. 2021;184:596–614.e14.
pmcid: 7933824
doi: 10.1016/j.cell.2021.01.002
pubmed: 33508232
Miao D, Margolis CA, Gao W, Voss MH, Li W, Martini DJ, et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science. 2018;359:801–6.
pmcid: 6035749
doi: 10.1126/science.aan5951
pubmed: 29301960
Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016;6:827–37.
pmcid: 5082984
doi: 10.1158/2159-8290.CD-15-1545
pubmed: 27301722
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 2013;41:D991–995.
doi: 10.1093/nar/gks1193
pubmed: 23193258
Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10.
pmcid: 99122
doi: 10.1093/nar/30.1.207
pubmed: 11752295
Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165:35–44.
pmcid: 4808437
doi: 10.1016/j.cell.2016.02.065
pubmed: 26997480
Rose TL, Weir WH, Mayhew GM, Shibata Y, Eulitt P, Uronis JM, et al. Fibroblast growth factor receptor 3 alterations and response to immune checkpoint inhibition in metastatic urothelial cancer: a real world experience. Br J Cancer. 2021;125:1251–60.
pmcid: 8548561
doi: 10.1038/s41416-021-01488-6
pubmed: 34294892
DeVito NC, Sturdivant M, Thievanthiran B, Xiao C, Plebanek MP, Salama AKS, et al. Pharmacological Wnt ligand inhibition overcomes key tumor-mediated resistance pathways to anti-PD-1 immunotherapy. Cell Rep. 2021;35:109071.
pmcid: 8148423
doi: 10.1016/j.celrep.2021.109071
pubmed: 33951424
Hsu CL, Ou DL, Bai LY, Chen CW, Lin L, Huang SF, et al. Exploring markers of exhausted CD8 T cells to predict response to immune checkpoint inhibitor therapy for hepatocellular carcinoma. Liver Cancer. 2021;10:346–59.
pmcid: 8339511
doi: 10.1159/000515305
pubmed: 34414122
Auslander N, Zhang G, Lee JS, Frederick DT, Miao B, Moll T, et al. Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat Med. 2018;24:1545–9.
pmcid: 6693632
doi: 10.1038/s41591-018-0157-9
pubmed: 30127394
Gide TN, Quek C, Menzies AM, Tasker AT, Shang P, Holst J, et al. Distinct immune cell populations define response to anti-PD-1 monotherapy and anti-PD-1/Anti-CTLA-4 combined therapy. Cancer Cell. 2019;35:238–55.
doi: 10.1016/j.ccell.2019.01.003
pubmed: 30753825
Zappasodi R, Serganova I, Cohen IJ, Maeda M, Shindo M, Senbabaoglu Y, et al. CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours. Nature. 2021;591:652–8.
pmcid: 8057670
doi: 10.1038/s41586-021-03326-4
pubmed: 33588426
van den Ende T, de Clercq NC, van Berge Henegouwen MI, Gisbertz SS, Geijsen ED, Verhoeven RHA, et al. Neoadjuvant chemoradiotherapy combined with atezolizumab for resectable esophageal adenocarcinoma: A Single-arm Phase II Feasibility Trial (PERFECT). Clin Cancer Res. 2021;27:3351–9.
doi: 10.1158/1078-0432.CCR-20-4443
pubmed: 33504550
Mamdani H, Schneider B, Perkins SM, Burney HN, Kasi PM, Abushahin LI, et al. A Phase II trial of adjuvant durvalumab following trimodality therapy for locally advanced esophageal and gastroesophageal junction adenocarcinoma: A Big Ten Cancer Research Consortium Study. Front Oncol. 2021;11:736620.
pmcid: 8484871
doi: 10.3389/fonc.2021.736620
pubmed: 34604072
Sarhadi VK, Armengol G. Molecular biomarkers in cancer. Biomolecules. 2022;12:1021.
pmcid: 9331210
doi: 10.3390/biom12081021
pubmed: 35892331
Cercek A, Lumish M, Sinopoli J, Weiss J, Shia J, Lamendola-Essel M, et al. PD-1 blockade in mismatch repair–deficient, locally advanced rectal cancer. N Engl J Med. 2022;386:2363–76.
pmcid: 9492301
doi: 10.1056/NEJMoa2201445
pubmed: 35660797
Kacew A, Sweis RF. FGFR3 alterations in the era of immunotherapy for urothelial bladder cancer. Front Immunol. 2020;11:575258.
pmcid: 7674585
doi: 10.3389/fimmu.2020.575258
pubmed: 33224141
Sweis RF, Spranger S, Bao R, Paner GP, Stadler WM, Steinberg G, et al. Molecular drivers of the non-T-cell-inflamed tumor microenvironment in urothelial bladder cancer. Cancer Immunol Res. 2016;4:563–8.
pmcid: 4943758
doi: 10.1158/2326-6066.CIR-15-0274
pubmed: 27197067
Chen S, Zhang N, Shao J, Wang T, Wang X. Multi-omics perspective on the tumor microenvironment based on PD-L1 and CD8 T-cell infiltration in urothelial cancer. J Cancer. 2019;10:697–707.
pmcid: 6360411
doi: 10.7150/jca.28494
pubmed: 30719168
Kommalapati A, Tella SH, Borad M, Javle M, Mahipal A. FGFR inhibitors in oncology: insight on the management of toxicities in clinical practice. Cancers. 2021;13:2968.
pmcid: 8231807
doi: 10.3390/cancers13122968
pubmed: 34199304
Zengin ZB, Chehrazi-Raffle A, Salgia NJ, Muddasani R, Ali S, Meza L, et al. Targeted therapies: Expanding the role of FGFR3 inhibition in urothelial carcinoma. Urol Oncol: Semin Original Investig. 2022;40:25–36.
doi: 10.1016/j.urolonc.2021.10.003
Palakurthi S, Kuraguchi M, Zacharek SJ, Zudaire E, Huang W, Bonal DM, et al. The combined effect of FGFR inhibition and PD-1 blockade promotes tumor-intrinsic induction of antitumor immunity. Cancer Immunol Res. 2019;7:1457–71.
doi: 10.1158/2326-6066.CIR-18-0595
pubmed: 31331945
Liu ST, Pham H, Pandol SJ, Ptasznik A. Src as the link between inflammation and cancer. Front Physiol. 2014;4:416.
pmcid: 3893689
doi: 10.3389/fphys.2013.00416
pubmed: 24474940
Roskoski R. Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Pharmacol Res. 2015;94:9–25.
doi: 10.1016/j.phrs.2015.01.003
pubmed: 25662515
Basu A. The interplay between apoptosis and cellular senescence: Bcl-2 family proteins as targets for cancer therapy. Pharmacol Ther. 2022;230:107943.
doi: 10.1016/j.pharmthera.2021.107943
pubmed: 34182005
Zhang Y, Zheng J. Functions of immune checkpoint molecules beyond immune evasion. Adv Exp Med Biol. 2020;1248:201–26.
doi: 10.1007/978-981-15-3266-5_9
pubmed: 32185712
Roberts AW, Wei AH, Huang DCS. BCL2 and MCL1 inhibitors for hematologic malignancies. Blood. 2021;138:1120–36.
doi: 10.1182/blood.2020006785
pubmed: 34320168
Vogler M. Targeting BCL2-proteins for the treatment of solid tumours. Adv Med. 2014;2014:943648.
pmcid: 4590949
doi: 10.1155/2014/943648
pubmed: 26556430
Szulzewsky F, Holland EC, Vasioukhin V. YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Dev Biol. 2021;475:205–21.
pmcid: 8107117
doi: 10.1016/j.ydbio.2020.12.018
pubmed: 33428889
Wang S, Zhou L, Ling L, Meng X, Chu F, Zhang S, et al. The crosstalk between Hippo-YAP pathway and innate immunity. Front Immunol. 2020;11:323.
pmcid: 7056731
doi: 10.3389/fimmu.2020.00323
pubmed: 32174922
Wei C, Li X. The role of photoactivated and non-photoactivated verteporfin on tumor. Front Pharmacol. 2020;11:557429.
pmcid: 7593515
doi: 10.3389/fphar.2020.557429
pubmed: 33178014
Yong J, Li Y, Lin S, Wang Z, Xu Y. Inhibitors targeting YAP in gastric cancer: current status and future perspectives. Drug Des Dev Ther. 2021;15:2445–56.
doi: 10.2147/DDDT.S308377
Barsyte-Lovejoy D, Li F, Oudhoff MJ, Tatlock JH, Dong A, Zeng H, et al. (R)-PFI-2 is a potent and selective inhibitor of SETD7 methyltransferase activity in cells. Proc Natl Acad Sci USA. 2014;111:12853–8.
pmcid: 4156762
doi: 10.1073/pnas.1407358111
pubmed: 25136132
Monteiro FL, Williams C, Helguero LA. A systematic review to define the multi-faceted role of lysine methyltransferase SETD7 in cancer. Cancers. 2022;14:1414.
pmcid: 8946661
doi: 10.3390/cancers14061414
pubmed: 35326563
Oudhoff MJ, Freeman SA, Couzens AL, Antignano F, Kuznetsova E, Min PH, et al. Control of the hippo pathway by Set7-dependent methylation of Yap. Dev Cell. 2013;26:188–94.
doi: 10.1016/j.devcel.2013.05.025
pubmed: 23850191
Oudhoff MJ, Braam MJS, Freeman SA, Wong D, Rattray DG, Wang J, et al. SETD7 controls intestinal regeneration and tumorigenesis by regulating Wnt/β-Catenin and Hippo/YAP signaling. Dev Cell. 2016;37:47–57.
doi: 10.1016/j.devcel.2016.03.002
pubmed: 27046831
Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, et al. Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol. 2017;10:101.
pmcid: 5420131
doi: 10.1186/s13045-017-0471-6
pubmed: 28476164
Chiang C, Yang H, Zhu L, Chen C, Chen C, Zuo Y, et al. The epigenetic regulation of nonhistone proteins by SETD7: New targets in cancer. Front Genet. 2022;13:918509.
pmcid: 9256981
doi: 10.3389/fgene.2022.918509
pubmed: 35812730
Meng F, Cheng S, Ding H, Liu S, Liu Y, Zhu K, et al. Discovery and optimization of novel, selective histone methyltransferase SET7 inhibitors by pharmacophore- and docking-based virtual screening. J Med Chem. 2015;58:8166–81.
doi: 10.1021/acs.jmedchem.5b01154
pubmed: 26390175
Ding H, Lu WC, Hu JC, Liu YC, Zhang CH, Lian FL, et al. Identification and characterizations of novel, selective histone methyltransferase SET7 inhibitors by Scaffold Hopping- and 2D-molecular fingerprint-based similarity search. Molecules. 2018;23:E567.
doi: 10.3390/molecules23030567
Takemoto Y, Ito A, Niwa H, Okamura M, Fujiwara T, Hirano T, et al. Identification of cyproheptadine as an inhibitor of SET domain containing lysine methyltransferase 7/9 (Set7/9) that regulates estrogen-dependent transcription. J Med Chem. 2016;59:3650–60.
doi: 10.1021/acs.jmedchem.5b01732
pubmed: 27088648
Li D, Guo J, Jia R. Histone code reader SPIN1 is a promising target of cancer therapy. Biochimie 2021;191:78–86.
doi: 10.1016/j.biochi.2021.09.002
pubmed: 34492335
Wang JX, Zeng Q, Chen L, Du JC, Yan XL, Yuan HF, et al. SPINDLIN1 promotes cancer cell proliferation through activation of WNT/TCF-4 signaling. Mol Cancer Res. 2012;10:326–35.
doi: 10.1158/1541-7786.MCR-11-0440
pubmed: 22258766
Han F, Hu M, Zhang L, Fan X, Wang J, Lou Z, et al. A-to-I RNA editing of BLCAP promotes cell proliferation by losing the inhibitory of Rb1 in colorectal cancer. Exp Cell Res. 2022;417:113209.
doi: 10.1016/j.yexcr.2022.113209
pubmed: 35605649
Gromova I, Svensson S, Gromov P, Moreira JMA. Identification of BLCAP as a novel STAT3 interaction partner in bladder cancer. PLoS One. 2017;12:e0188827.
pmcid: 5708675
doi: 10.1371/journal.pone.0188827
pubmed: 29190807
Moreira JMA, Ohlsson G, Gromov P, Simon R, Sauter G, Celis JE, et al. Bladder cancer-associated protein, a potential prognostic biomarker in human bladder cancer. Mol Cell Proteom. 2010;9:161–77.
doi: 10.1074/mcp.M900294-MCP200
Huang YT, Wu TS, Lu CC, Yu FY, Liu BH. Aristolochic acid I interferes with the expression of BLCAP tumor suppressor gene in human cells. Toxicol Lett. 2018;291:129–37.
doi: 10.1016/j.toxlet.2018.03.032
pubmed: 29655784