Integrated systems immunology approach identifies impaired effector T cell memory responses as a feature of progression to severe dengue fever.
Dengue fever
Dengue hemorrhagic fever
Effector memory T cells
Non-classical monocytes
Journal
Journal of biomedical science
ISSN: 1423-0127
Titre abrégé: J Biomed Sci
Pays: England
ID NLM: 9421567
Informations de publication
Date de publication:
13 Apr 2023
13 Apr 2023
Historique:
received:
02
02
2023
accepted:
02
04
2023
medline:
17
4
2023
entrez:
13
4
2023
pubmed:
14
4
2023
Statut:
epublish
Résumé
Typical symptoms of uncomplicated dengue fever (DF) include headache, muscle pains, rash, cough, and vomiting. A proportion of cases progress to severe dengue hemorrhagic fever (DHF), associated with increased vascular permeability, thrombocytopenia, and hemorrhages. Progression to severe dengue is difficult to diagnose at the onset of fever, which complicates patient triage, posing a socio-economic burden on health systems. To identify parameters associated with protection and susceptibility to DHF, we pursued a systems immunology approach integrating plasma chemokine profiling, high-dimensional mass cytometry and peripheral blood mononuclear cell (PBMC) transcriptomic analysis at the onset of fever in a prospective study conducted in Indonesia. After a secondary infection, progression to uncomplicated dengue featured transcriptional profiles associated with increased cell proliferation and metabolism, and an expansion of ICOS Our results suggests that effector memory T cell activation might play an important role ameliorating severe disease symptoms during a secondary dengue infection, and in the absence of that response, a strong innate inflammatory response is required to control viral replication. Our research also identified discrete cell populations predicting increased odds of severe disease, with potential diagnostic value.
Sections du résumé
BACKGROUND
BACKGROUND
Typical symptoms of uncomplicated dengue fever (DF) include headache, muscle pains, rash, cough, and vomiting. A proportion of cases progress to severe dengue hemorrhagic fever (DHF), associated with increased vascular permeability, thrombocytopenia, and hemorrhages. Progression to severe dengue is difficult to diagnose at the onset of fever, which complicates patient triage, posing a socio-economic burden on health systems.
METHODS
METHODS
To identify parameters associated with protection and susceptibility to DHF, we pursued a systems immunology approach integrating plasma chemokine profiling, high-dimensional mass cytometry and peripheral blood mononuclear cell (PBMC) transcriptomic analysis at the onset of fever in a prospective study conducted in Indonesia.
RESULTS
RESULTS
After a secondary infection, progression to uncomplicated dengue featured transcriptional profiles associated with increased cell proliferation and metabolism, and an expansion of ICOS
CONCLUSIONS
CONCLUSIONS
Our results suggests that effector memory T cell activation might play an important role ameliorating severe disease symptoms during a secondary dengue infection, and in the absence of that response, a strong innate inflammatory response is required to control viral replication. Our research also identified discrete cell populations predicting increased odds of severe disease, with potential diagnostic value.
Identifiants
pubmed: 37055751
doi: 10.1186/s12929-023-00916-4
pii: 10.1186/s12929-023-00916-4
pmc: PMC10103532
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
24Subventions
Organisme : National Health and Medical Research Council
ID : 200466
Organisme : National Health and Medical Research Council
ID : Independent Medical Research Institutes Infrastructure Support Scheme
Organisme : Australian Academy of Science
ID : Regional Collaboration Grant
Organisme : Ministry of Research and Technology of Indonesia
ID : Ministry of Research and Technology of Indonesia
Informations de copyright
© 2023. The Author(s).
Références
iScience. 2022 May 10;25(6):104384
pubmed: 35620424
Bioinformatics. 2014 Oct;30(19):2811-2
pubmed: 24930139
Front Immunol. 2014 Mar 07;5:93
pubmed: 24639680
Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):E2770-7
pubmed: 24979804
Blood. 2012 Apr 26;119(17):3997-4008
pubmed: 22403255
Nucleic Acids Res. 2015 Sep 3;43(15):e97
pubmed: 25925576
J Biomed Sci. 2020 Apr 8;27(1):50
pubmed: 32264870
PLoS One. 2010 Jul 20;5(7):e11671
pubmed: 20652028
PLoS Pathog. 2017 Sep 27;13(9):e1006576
pubmed: 28953967
PLoS Negl Trop Dis. 2007 Nov 21;1(2):e86
pubmed: 18060089
Immunology. 2019 Feb;156(2):147-163
pubmed: 30315653
J Immunol. 2005 Aug 15;175(4):2676-83
pubmed: 16081844
Bioinformatics. 2014 Apr 1;30(7):923-30
pubmed: 24227677
Arch Virol. 2013 Jul;158(7):1445-59
pubmed: 23471635
Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16922-7
pubmed: 20837518
Cell. 2018 Aug 23;174(5):1143-1157.e17
pubmed: 30078703
PLoS Negl Trop Dis. 2015 Mar 13;9(3):e0003522
pubmed: 25768297
Clin Cancer Res. 2022 Sep 1;28(17):3695-3708
pubmed: 35511938
J Immunol. 2009 Aug 1;183(3):2176-82
pubmed: 19592645
Nat Biotechnol. 2013 Jun;31(6):545-52
pubmed: 23685480
Pathog Glob Health. 2014 Mar;108(2):103-10
pubmed: 24606537
J Clin Invest. 2022 Jun 15;132(12):
pubmed: 35439168
PLoS Pathog. 2017 Sep 27;13(9):e1006635
pubmed: 28953980
J Virol. 2010 Dec;84(24):12982-94
pubmed: 20943967
Cell Rep Med. 2021 May 18;2(5):100278
pubmed: 34095880
Front Immunol. 2018 Jun 06;9:1272
pubmed: 29928280
Immunity. 2013 Oct 17;39(4):758-69
pubmed: 24035365
Bioinformatics. 2011 Jun 15;27(12):1739-40
pubmed: 21546393
WHO South East Asia J Public Health. 2013 Jan-Mar;2(1):23-27
pubmed: 28612819
Nature. 2013 Apr 25;496(7446):504-7
pubmed: 23563266
Nucleic Acids Res. 2013 May 1;41(10):e108
pubmed: 23558742
J Infect Dis. 2018 Oct 5;218(10):1675-1685
pubmed: 29917084
Nucleic Acids Res. 2015 Apr 20;43(7):e47
pubmed: 25605792
PLoS Negl Trop Dis. 2010 Jun 15;4(6):e710
pubmed: 20559541
Immunity. 2019 Dec 17;51(6):1119-1135.e5
pubmed: 31757672
Immunology. 2020 May;160(1):90-102
pubmed: 32128816
Am J Trop Med Hyg. 1991 Oct;45(4):408-17
pubmed: 1951849
Genome Biol. 2010;11(2):R14
pubmed: 20132535
Elife. 2015 May 08;4:
pubmed: 25955968
J Infect Dis. 2009 Feb 15;199(4):537-546
pubmed: 19138155
Immunity. 2013 Oct 17;39(4):770-81
pubmed: 24138884
J Immunol. 2009 Apr 15;182(8):4865-73
pubmed: 19342665
Sci Rep. 2019 Jul 12;9(1):10090
pubmed: 31300682
J Infect Dis. 2016 May 1;213(9):1428-35
pubmed: 26704615
J Infect Dis. 2007 Apr 15;195(8):1097-107
pubmed: 17357045
Cell Host Microbe. 2014 Jul 9;16(1):115-27
pubmed: 24981333
Genome Biol. 2010;11(3):R25
pubmed: 20196867
Bioinformatics. 2016 Sep 15;32(18):2847-9
pubmed: 27207943
J Infect Dis. 2011 May 1;203(9):1282-91
pubmed: 21335561
PLoS One. 2012;7(5):e36435
pubmed: 22574162
Bioinformatics. 2010 Jan 1;26(1):139-40
pubmed: 19910308
Nucleic Acids Res. 2019 May 7;47(8):e47
pubmed: 30783653
Transl Res. 2017 Aug;186:62-78.e9
pubmed: 28683259
Nat Immunol. 2014 Feb;15(2):195-204
pubmed: 24336226
J Virol. 2008 Dec;82(24):12312-24
pubmed: 18842737
Expert Rev Anti Infect Ther. 2017 Feb;15(2):111-119
pubmed: 27796143
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
pubmed: 16199517
Cytometry A. 2013 May;83(5):483-94
pubmed: 23512433
Genome Biol. 2014 Feb 03;15(2):R29
pubmed: 24485249
Adv Virus Res. 2003;60:421-67
pubmed: 14689700
Front Immunol. 2021 Oct 27;12:741837
pubmed: 34777354
PLoS Negl Trop Dis. 2013;7(2):e2055
pubmed: 23437406
Microbiol Immunol. 2009 Aug;53(8):442-50
pubmed: 19659928
Cancer Res. 2016 Jul 1;76(13):3684-9
pubmed: 27197182
Lancet Infect Dis. 2016 Aug;16(8):935-41
pubmed: 27091092
PLoS Negl Trop Dis. 2012;6(12):e1966
pubmed: 23285306
Cytometry A. 2015 Jul;87(7):636-45
pubmed: 25573116
Am J Trop Med Hyg. 2009 Mar;80(3):416-24
pubmed: 19270292
PLoS Negl Trop Dis. 2013 Jul 11;7(7):e2298
pubmed: 23875036
BMC Infect Dis. 2016 Jul 08;16:322
pubmed: 27391122
Curr Protoc Cytom. 2010 Jul;Chapter 10:Unit10.17
pubmed: 20578106
J Exp Med. 2008 Aug 4;205(8):1797-805
pubmed: 18625747
Sci Transl Med. 2017 Aug 30;9(405):
pubmed: 28855396
PLoS Pathog. 2016 Jan 06;12(1):e1005357
pubmed: 26735137
Sci Rep. 2022 Sep 02;12(1):14954
pubmed: 36056093
Am J Trop Med Hyg. 2011 Nov;85(5):942-5
pubmed: 22049054
Pathogens. 2021 Nov 10;10(11):
pubmed: 34832614
Nat Med. 2003 Jul;9(7):921-7
pubmed: 12808447
Cell Rep. 2019 Jan 29;26(5):1104-1111.e4
pubmed: 30699342
J Clin Invest. 2019 Mar 18;129(4):1727-1741
pubmed: 30882366
J Immunol. 2015 Sep 1;195(5):1933-7
pubmed: 26297793
Stat Appl Genet Mol Biol. 2004;3:Article3
pubmed: 16646809
J Virol. 1999 Jan;73(1):783-6
pubmed: 9847388
Bioinformatics. 2015 Sep 1;31(17):2912-4
pubmed: 25964631
Proc Natl Acad Sci U S A. 2013 May 28;110(22):E2046-53
pubmed: 23580623
Genome Med. 2022 Mar 29;14(1):33
pubmed: 35346346
PLoS One. 2011 Feb 18;6(2):e16529
pubmed: 21364749
Nat Rev Immunol. 2019 Apr;19(4):218-230
pubmed: 30679808
Nat Immunol. 2017 Nov;18(11):1228-1237
pubmed: 28945243
PLoS One. 2009 Nov 19;4(11):e7892
pubmed: 19936257
ESMO Open. 2020 Jan;5(1):
pubmed: 32516116
J Infect Dis. 2008 May 15;197(10):1459-67
pubmed: 18444802
PLoS Negl Trop Dis. 2019 Jan 10;13(1):e0007038
pubmed: 30629593
Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):E12363-E12369
pubmed: 30530648