From animal collective behaviors to swarm robotic cooperation.
collective behaviors
cooperative robotics swarm
human-machine system
swarm intelligence
Journal
National science review
ISSN: 2053-714X
Titre abrégé: Natl Sci Rev
Pays: China
ID NLM: 101633095
Informations de publication
Date de publication:
May 2023
May 2023
Historique:
received:
15
08
2022
revised:
15
01
2023
accepted:
14
02
2023
medline:
15
4
2023
entrez:
14
4
2023
pubmed:
15
4
2023
Statut:
epublish
Résumé
The collective behaviors of animals, from schooling fish to packing wolves and flocking birds, display plenty of fascinating phenomena that result from simple interaction rules among individuals. The emergent intelligent properties of the animal collective behaviors, such as self-organization, robustness, adaptability and expansibility, have inspired the design of autonomous unmanned swarm systems. This article reviews several typical natural collective behaviors, introduces the origin and connotation of swarm intelligence, and gives the application case of animal collective behaviors. On this basis, the article focuses on the forefront of progress and bionic achievements of aerial, ground and marine robotics swarms, illustrating the mapping relationship from biological cooperative mechanisms to cooperative unmanned cluster systems. Finally, considering the significance of the coexisting-cooperative-cognitive human-machine system, the key technologies to be solved are given as the reference directions for the subsequent exploration.
Identifiants
pubmed: 37056435
doi: 10.1093/nsr/nwad040
pii: nwad040
pmc: PMC10089591
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
nwad040Informations de copyright
© The Author(s) 2023. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd.
Déclaration de conflit d'intérêts
None declared.
Références
Sci Robot. 2021 Jan 13;6(50):
pubmed: 34043581
Sci Robot. 2022 Jun 15;7(67):eabl6334
pubmed: 35704608
Sci Robot. 2018 Jul 18;3(20):
pubmed: 33141727
IEEE Trans Cybern. 2018 Oct;48(10):2920-2934
pubmed: 28961137
PLoS Comput Biol. 2022 Jan 10;18(1):e1009772
pubmed: 35007287
Sci Robot. 2022 May 4;7(66):eabm5954
pubmed: 35507682
Sci Robot. 2019 Mar 20;4(28):
pubmed: 33137748
Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18726-31
pubmed: 22065759
Nature. 2014 Jan 16;505(7483):399-402
pubmed: 24429637
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2115-20
pubmed: 25646487
J Theor Biol. 2002 Sep 7;218(1):1-11
pubmed: 12297066
Nature. 2010 Apr 8;464(7290):890-3
pubmed: 20376149
Phys Rev Lett. 1995 Aug 7;75(6):1226-1229
pubmed: 10060237
PLoS Comput Biol. 2017 Nov 21;13(11):e1005822
pubmed: 29161269
Nature. 2019 Mar;567(7748):361-365
pubmed: 30894722
Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11865-70
pubmed: 20547832
Phys Rev Lett. 2014 Dec 5;113(23):238102
pubmed: 25526161
J Integr Neurosci. 2020 Sep 30;19(3):443-448
pubmed: 33070523
J Comp Psychol. 2020 May;134(2):211-221
pubmed: 31855034
IEEE Trans Cybern. 2022 Oct;52(10):11267-11280
pubmed: 33909584
Natl Sci Rev. 2020 Aug;7(8):1273-1277
pubmed: 34692154
IEEE Trans Cybern. 2022 May 17;PP:
pubmed: 35580098
PeerJ. 2016 Nov 22;4:e2707
pubmed: 27904806
Science. 2014 Aug 15;345(6198):795-9
pubmed: 25124435
IEEE Trans Cybern. 2016 Apr;46(4):959-72
pubmed: 25898328
Proc Biol Sci. 2015 Oct 7;282(1816):20151558
pubmed: 26400742
Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18720-5
pubmed: 21795604
Proc Natl Acad Sci U S A. 2014 May 20;111(20):7212-7
pubmed: 24785504