Improved detection of aberrant splicing using the Intron Jaccard Index.


Journal

medRxiv : the preprint server for health sciences
Titre abrégé: medRxiv
Pays: United States
ID NLM: 101767986

Informations de publication

Date de publication:
03 Apr 2023
Historique:
pubmed: 18 4 2023
medline: 18 4 2023
entrez: 17 4 2023
Statut: epublish

Résumé

Detection of aberrantly spliced genes is an important step in RNA-seq-based rare disease diagnostics. We recently developed FRASER, a denoising autoencoder-based method for aberrant splicing detection that outperformed alternative approaches. However, as FRASER's three splice metrics are partially redundant and tend to be sensitive to sequencing depth, we introduce here a more robust intron excision metric, the Intron Jaccard Index, that combines alternative donor, alternative acceptor, and intron retention signal into a single value. Moreover, we optimized model parameters and filter cutoffs using candidate rare splice-disrupting variants as independent evidence. On 16,213 GTEx samples, our improved algorithm called typically 10 times fewer splicing outliers while increasing the proportion of candidate rare splice-disrupting variants by 10 fold and substantially decreasing the effect of sequencing depth on the number of reported outliers. Application on 303 rare disease samples confirmed the reduction fold-change of the number of outlier calls for a slight loss of sensitivity (only 2 out of 22 previously identified pathogenic splicing cases not recovered). Altogether, these methodological improvements contribute to more effective RNA-seq-based rare diagnostics by a drastic reduction of the amount of splicing outlier calls per sample at minimal loss of sensitivity.

Identifiants

pubmed: 37066374
doi: 10.1101/2023.03.31.23287997
pmc: PMC10104204
pii:
doi:

Types de publication

Preprint

Langues

eng

Subventions

Organisme : NHGRI NIH HHS
ID : U01 HG007690
Pays : United States
Organisme : NINDS NIH HHS
ID : U54 NS108251
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG010219
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG007674
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG007672
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG010233
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG010230
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG007943
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG010217
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG007942
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG010215
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG007708
Pays : United States
Organisme : NCATS NIH HHS
ID : U01 TR001395
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG007709
Pays : United States
Organisme : NINDS NIH HHS
ID : U54 NS093793
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG007530
Pays : United States
Organisme : NCATS NIH HHS
ID : U01 TR002471
Pays : United States
Organisme : NHGRI NIH HHS
ID : U01 HG007703
Pays : United States

Commentaires et corrections

Type : UpdateIn

Auteurs

Ines F Scheller (IF)

School of Computation, Information and Technology, Technical University of Munich, Garching, 85748, Germany.
Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.

Karoline Lutz (K)

School of Computation, Information and Technology, Technical University of Munich, Garching, 85748, Germany.

Christian Mertes (C)

School of Computation, Information and Technology, Technical University of Munich, Garching, 85748, Germany.
Munich Data Science Institute, Technical University of Munich, Garching, 85748, Germany.
Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, 81675, Germany.

Vicente A Yépez (VA)

School of Computation, Information and Technology, Technical University of Munich, Garching, 85748, Germany.

Julien Gagneur (J)

School of Computation, Information and Technology, Technical University of Munich, Garching, 85748, Germany.
Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.
Munich Data Science Institute, Technical University of Munich, Garching, 85748, Germany.
Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, 81675, Germany.

Classifications MeSH