Ni-Catalyzed Photochemical C-N Coupling of Amides with (Hetero)aryl Chlorides.
C−N coupling
amidation
amides
homogeneous catalysis
nickel
Journal
Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783
Informations de publication
Date de publication:
03 Jul 2023
03 Jul 2023
Historique:
received:
13
02
2023
medline:
18
4
2023
pubmed:
18
4
2023
entrez:
17
4
2023
Statut:
ppublish
Résumé
This paper reports a photochemical C-N coupling of abundant, but less reactive aryl chlorides, with structurally diverse primary and secondary amides by Ni-mediated without an external photocatalyst. Under the irradiation of light (390-395 nm) with a soluble organic amine as the base, the reaction allows for the successful transformation of (hetero)aryl chlorides to a wide range of N-aryl amides. More than 60 examples are shown, demonstrating the feasibility and applicability of this protocol in organic synthesis. Mechanic studies indicate that this amidation proceeds via a Ni(I)-Ni(III) catalytic cycle.
Identifiants
pubmed: 37066524
doi: 10.1002/chem.202300458
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202300458Subventions
Organisme : National Natural Science Foundation of China
ID : 22171174
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
For selected representative examples on Pd-catalyzed Buchwald-Hartwig reaction, see:
W. C. Shakespeare, Tetrahedron Lett. 1999, 40, 2035-2038;
J. Yin, S. L. Buchwald, Org. Lett. 2000, 2, 1101-1104;
J. Yin, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124, 6043-6048;
K. Fujita, M. Yamashita, F. Puschmann, M. M. A. Falcon, C. D. Incarvito, J. F. Hartwig, J. Am. Chem. Soc. 2006, 128, 9044-9045;
Q. Shen, J. F. Hartwig, J. Am. Chem. Soc. 2007, 129, 7734-7735;
T. E. Barder, M. R. Biscoe, S. L. Buchwald, J. Am. Chem. Soc. 2007, 129, 13001-13007;
J. D. Hicks, A. M. Hyde, A. M. Cuezva, S. L. Buchwald, J. Am. Chem. Soc. 2009, 131, 16720-16734.
For selected representative examples on Cu-catalyzed, see:
E. R. Strieter, D. G. Blackmond, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 4120-4121;
S. De, J. Yin, D. Ma, Org. Lett. 2017, 19, 4864-4867;
R. K. Chang, B. P. Clairmont, S. Lin, A. H. R. MacArthur, Organometallics 2019, 38, 4448-4454.
For reviews for Pd catalysis, see:
P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564-12649;
R. Dorel, C. P. Grugel, A. M. Haydl, Angew. Chem. Int. Ed. 2019, 58, 17118-17129;
Angew. Chem. 2019, 131, 17276-17287; For reviews for Cu catalysis, see:
G. Evano, N. Blanchard, M. Toumi, Chem. Rev. 2008, 108, 3054-3131;
C. Sambiagio, S. P. Marsden, A. J. Blacker, P. C. McGowan, Chem. Soc. Rev. 2014, 43, 3525-3550;
Q. Cai, W. Zhou, Chin. J. Chem. 2020, 38, 879-893;
Q. Yang, Y. Zhao, D. Ma, Org. Process Res. Dev. 2022, 26, 1690-1750.
C. M. Lavoie, P. M. MacQueen, M. Stradiotto, Chem. Eur. J. 2016, 22, 18752-18755;
T. Lundrigan, J. P. Tassone, M. Stradiotto, Synlett 2021, 32, 1665-1669;
R. T. McGuire, T. Lundrigan, J. W. M. MacMillan, K. N. Robertson, A. A. Yadav, M. Stradiotto, Angew. Chem. Int. Ed. 2022, 61, e202200352;
Angew. Chem. 2022, 134, e202200352.
C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322-5363;
J. Twilton, C. Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C. MacMillan, Nat. Chem. Rev. 2017, 1, 0052.
For Ni-catalyzed C−N coupling using soluble organic bases, see: R. Y. Liu, J. M. Dennis, S. L. Buchwald, J. Am. Chem. Soc. 2020, 142, 4500-4507.
E. B. Corcoran, M. T. Pirnot, S. Lin, S. D. Dreher, D. A. Dirocco, I. W. Davies, S. L. Buchwald, D. W. C. MacMillan, Science 2016, 353, 279-283;
N. A. Till, L. Tian, Z. Dong, G. D. Scholes, D. W. C. MacMillan, J. Am. Chem. Soc. 2020, 142, 15830-15841;
M. S. Oderinde, N. H. Jones, A. Juneau, M. Frenette, B. Aquila, S. Tentarelli, D. W. Robbins, J. W. Johannes, Angew. Chem. Int. Ed. 2016, 55, 13219-13223;
Angew. Chem. 2016, 128, 13413-13417.
L. R. Reddy, S. Kotturi, Y. Waman, V. Ravinder Reddy, C. Patel, A. Kobarne, S. Kuttappan, J. Org. Chem. 2018, 83, 13854-13860;
R. D. Bradley, A. Bahamonde, Org. Lett. 2022, 24, 7134-7139.
V. V. Grushin, H. Alper, Chem. Rev. 1994, 94, 1047-1062;
A. F. Littke, G. C. Fu, Angew. Chem. Int. Ed. 2002, 41, 4176-4211;
Angew. Chem. 2002, 114, 4350-4386.
For reviews, see:
Y. Abderrazak, A. Bhattacharyya, O. Reiser, Angew. Chem. Int. Ed. 2021, 60, 21100-21115;
Angew. Chem. 2021, 133, 21268-21284;
O. S. Wenger, Chem. Eur. J. 2021, 27, 2270-2278.
C. Cavedon, S. Gisbertz, S. Reischauer, S. Vogl, E. Sperlich, J. H. Burke, R. F. Wallick, S. Schrottke, W.-H. Hsu, L. Anghileri, Y. Pfeifer, N. Richter, C. Teutloff, H. Müller-Werkmeister, D. Cambié, P. H. Seeberger, J. Vura-Weis, R. M. van der Veen, A. Thomas, B. Pieber, Angew. Chem. Int. Ed. 2022, 61, e202211433;
Angew. Chem. 2022, 134, e202211433.
C.-H. Lim, M. Kudisch, B. Liu, G. M. Miyake, J. Am. Chem. Soc. 2018, 140, 7667-7673;
M. Kudisch, C.-H. Lim, P. Thordarson, G. M. Miyake, J. Am. Chem. Soc. 2019, 141, 19479-19486;
H. Luo, G. Wang, Y. Feng, W. Zheng, L. Kong, Y. Ma, S. Matsunaga, L. Lin, Chem. Eur. J. 2023, 29, e202202385;
R. Li, C.-X. Yang, B.-H. Niu, L.-J. Li, J.-M. Ma, Z.-L. Li, H. Jiang, W.-M. Cheng, Org. Chem. Front. 2022, 9, 3847-3853.
G. Li, L. Yang, J.-J. Liu, W. Zhang, R. Cao, C. Wang, Z. Zhang, J. Xiao, D. Xue, Angew. Chem. Int. Ed. 2021, 60, 5230-5234;
Angew. Chem. 2021,133, 5290-5294;
G. Song, L. Yang, J.-S. Li, W.-J. Tang, W. Zhang, R. Cao, C. Wang, J. Xiao, D. Xue, Angew. Chem. Int. Ed. 2021, 60, 21536-21542;
Angew. Chem. 2021, 133, 21706-21712;
G. Song, D.-Z. Nong, J.-S. Li, G. Li, W. Zhang, R. Cao, C. Wang, J. Xiao, D. Xue, J. Org. Chem. 2022, 87, 10285-10297;
G. Song, D.-Z. Nong, Q. Li, Y. Yan, G. Li, J. Fan, W. Zhang, R. Cao, C. Wang, J. Xiao, D. Xue, ACS Catal. 2022. 12, 15590-15599.
B. J. Shields, B. Kudisch, G. D. Scholes, A. G. Doyle, J. Am. Chem. Soc. 2018, 140, 3035-3039;
R. Sun, Y. Qin, S. Ruccolo, C. Schnedermann, C. Costentin, D. G. Nocera, J. Am. Chem. Soc. 2019, 141, 89-93;
S. I. Ting, S. Garakyaraghi, C. M. Taliaferro, B. J. Shields, G. D. Scholes, F. N. Castellano, A. G. Doyle, J. Am. Chem. Soc. 2020, 142, 5800-5810;
N. A. Till, S. Oh, D. W. C. MacMillan, M. J. Bird, J. Am. Chem. Soc. 2021, 143, 9332-9337;
S. I. Ting, W. L. Williams, A. G. Doyle, J. Am. Chem. Soc. 2022, 144, 5575-5582.
D. A. Cagan, D. Bím, B. Silva, N. P. Kazmierczak, B. J. McNicholas, R. G. Hadt, J. Am. Chem. Soc. 2022, 144, 6516-6531.
S. Bajo, G. Laidlaw, A. R. Kennedy, S. Sproules, D. J. Nelson, Organometallics 2017, 36, 1662-1672.
For details, see Supporting Information.
The iodide salt could play a role in stabilizing low valent nickel species: C. Amatore, M. Azzabi, A. Jutand, J. Am. Chem. Soc. 1991, 113, 8375-8384.
The promoting effect of TBAI could arise from a halogen exchange reaction:
A. Klapars, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124, 14844-14845;
A. A. Cant, R. Bhalla, S. L. Pimlott, A. Sutherland, Chem. Commun. 2012, 48, 3993-3995;
L. Li, W. Liu, X. Mu, Z. Mi, C.-J. Li, Nat. Protoc. 2016, 11, 1948-1954;
Y. Feng, H. Luo, W. Zheng, S. Matsunaga, L. Lin, ACS Catal. 2022, 12, 11089-11096.
T. Kerackian, A. Reina, T. Krachko, H. Boddaert, D. Bouyssi, N. Monteiro, A. Amgoune, Synlett 2021, 32, 1531-1536.
M. Kamimori, H. Sakuragi, T. Suehiro, K. Tokumaru, M. Yoshida, Bull. Chem. Soc. Jpn. 1977, 50, 1195-1200;
Y. Yan, J. Sun, G. Li, L. Yang, W. Zhang, R. Cao, C. Wang, J. Xiao, D. Xue, Org. Lett. 2022, 24, 2271-2275.
Organic amine could act as an electron donor to reduce Ni(II) to Ni(I) under irradiation: see Ref. [12a].