Ni-Catalyzed Photochemical C-N Coupling of Amides with (Hetero)aryl Chlorides.

C−N coupling amidation amides homogeneous catalysis nickel

Journal

Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783

Informations de publication

Date de publication:
03 Jul 2023
Historique:
received: 13 02 2023
medline: 18 4 2023
pubmed: 18 4 2023
entrez: 17 4 2023
Statut: ppublish

Résumé

This paper reports a photochemical C-N coupling of abundant, but less reactive aryl chlorides, with structurally diverse primary and secondary amides by Ni-mediated without an external photocatalyst. Under the irradiation of light (390-395 nm) with a soluble organic amine as the base, the reaction allows for the successful transformation of (hetero)aryl chlorides to a wide range of N-aryl amides. More than 60 examples are shown, demonstrating the feasibility and applicability of this protocol in organic synthesis. Mechanic studies indicate that this amidation proceeds via a Ni(I)-Ni(III) catalytic cycle.

Identifiants

pubmed: 37066524
doi: 10.1002/chem.202300458
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202300458

Subventions

Organisme : National Natural Science Foundation of China
ID : 22171174

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

For selected representative examples on Pd-catalyzed Buchwald-Hartwig reaction, see:
W. C. Shakespeare, Tetrahedron Lett. 1999, 40, 2035-2038;
J. Yin, S. L. Buchwald, Org. Lett. 2000, 2, 1101-1104;
J. Yin, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124, 6043-6048;
K. Fujita, M. Yamashita, F. Puschmann, M. M. A. Falcon, C. D. Incarvito, J. F. Hartwig, J. Am. Chem. Soc. 2006, 128, 9044-9045;
Q. Shen, J. F. Hartwig, J. Am. Chem. Soc. 2007, 129, 7734-7735;
T. E. Barder, M. R. Biscoe, S. L. Buchwald, J. Am. Chem. Soc. 2007, 129, 13001-13007;
J. D. Hicks, A. M. Hyde, A. M. Cuezva, S. L. Buchwald, J. Am. Chem. Soc. 2009, 131, 16720-16734.
For selected representative examples on Cu-catalyzed, see:
E. R. Strieter, D. G. Blackmond, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 4120-4121;
S. De, J. Yin, D. Ma, Org. Lett. 2017, 19, 4864-4867;
R. K. Chang, B. P. Clairmont, S. Lin, A. H. R. MacArthur, Organometallics 2019, 38, 4448-4454.
For reviews for Pd catalysis, see:
P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564-12649;
R. Dorel, C. P. Grugel, A. M. Haydl, Angew. Chem. Int. Ed. 2019, 58, 17118-17129;
Angew. Chem. 2019, 131, 17276-17287; For reviews for Cu catalysis, see:
G. Evano, N. Blanchard, M. Toumi, Chem. Rev. 2008, 108, 3054-3131;
C. Sambiagio, S. P. Marsden, A. J. Blacker, P. C. McGowan, Chem. Soc. Rev. 2014, 43, 3525-3550;
Q. Cai, W. Zhou, Chin. J. Chem. 2020, 38, 879-893;
Q. Yang, Y. Zhao, D. Ma, Org. Process Res. Dev. 2022, 26, 1690-1750.
 
C. M. Lavoie, P. M. MacQueen, M. Stradiotto, Chem. Eur. J. 2016, 22, 18752-18755;
T. Lundrigan, J. P. Tassone, M. Stradiotto, Synlett 2021, 32, 1665-1669;
R. T. McGuire, T. Lundrigan, J. W. M. MacMillan, K. N. Robertson, A. A. Yadav, M. Stradiotto, Angew. Chem. Int. Ed. 2022, 61, e202200352;
Angew. Chem. 2022, 134, e202200352.
 
C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322-5363;
J. Twilton, C. Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C. MacMillan, Nat. Chem. Rev. 2017, 1, 0052.
For Ni-catalyzed C−N coupling using soluble organic bases, see: R. Y. Liu, J. M. Dennis, S. L. Buchwald, J. Am. Chem. Soc. 2020, 142, 4500-4507.
 
E. B. Corcoran, M. T. Pirnot, S. Lin, S. D. Dreher, D. A. Dirocco, I. W. Davies, S. L. Buchwald, D. W. C. MacMillan, Science 2016, 353, 279-283;
N. A. Till, L. Tian, Z. Dong, G. D. Scholes, D. W. C. MacMillan, J. Am. Chem. Soc. 2020, 142, 15830-15841;
M. S. Oderinde, N. H. Jones, A. Juneau, M. Frenette, B. Aquila, S. Tentarelli, D. W. Robbins, J. W. Johannes, Angew. Chem. Int. Ed. 2016, 55, 13219-13223;
Angew. Chem. 2016, 128, 13413-13417.
 
L. R. Reddy, S. Kotturi, Y. Waman, V. Ravinder Reddy, C. Patel, A. Kobarne, S. Kuttappan, J. Org. Chem. 2018, 83, 13854-13860;
R. D. Bradley, A. Bahamonde, Org. Lett. 2022, 24, 7134-7139.
 
V. V. Grushin, H. Alper, Chem. Rev. 1994, 94, 1047-1062;
A. F. Littke, G. C. Fu, Angew. Chem. Int. Ed. 2002, 41, 4176-4211;
Angew. Chem. 2002, 114, 4350-4386.
For reviews, see:
Y. Abderrazak, A. Bhattacharyya, O. Reiser, Angew. Chem. Int. Ed. 2021, 60, 21100-21115;
Angew. Chem. 2021, 133, 21268-21284;
O. S. Wenger, Chem. Eur. J. 2021, 27, 2270-2278.
C. Cavedon, S. Gisbertz, S. Reischauer, S. Vogl, E. Sperlich, J. H. Burke, R. F. Wallick, S. Schrottke, W.-H. Hsu, L. Anghileri, Y. Pfeifer, N. Richter, C. Teutloff, H. Müller-Werkmeister, D. Cambié, P. H. Seeberger, J. Vura-Weis, R. M. van der Veen, A. Thomas, B. Pieber, Angew. Chem. Int. Ed. 2022, 61, e202211433;
Angew. Chem. 2022, 134, e202211433.
 
C.-H. Lim, M. Kudisch, B. Liu, G. M. Miyake, J. Am. Chem. Soc. 2018, 140, 7667-7673;
M. Kudisch, C.-H. Lim, P. Thordarson, G. M. Miyake, J. Am. Chem. Soc. 2019, 141, 19479-19486;
H. Luo, G. Wang, Y. Feng, W. Zheng, L. Kong, Y. Ma, S. Matsunaga, L. Lin, Chem. Eur. J. 2023, 29, e202202385;
R. Li, C.-X. Yang, B.-H. Niu, L.-J. Li, J.-M. Ma, Z.-L. Li, H. Jiang, W.-M. Cheng, Org. Chem. Front. 2022, 9, 3847-3853.
 
G. Li, L. Yang, J.-J. Liu, W. Zhang, R. Cao, C. Wang, Z. Zhang, J. Xiao, D. Xue, Angew. Chem. Int. Ed. 2021, 60, 5230-5234;
Angew. Chem. 2021,133, 5290-5294;
G. Song, L. Yang, J.-S. Li, W.-J. Tang, W. Zhang, R. Cao, C. Wang, J. Xiao, D. Xue, Angew. Chem. Int. Ed. 2021, 60, 21536-21542;
Angew. Chem. 2021, 133, 21706-21712;
G. Song, D.-Z. Nong, J.-S. Li, G. Li, W. Zhang, R. Cao, C. Wang, J. Xiao, D. Xue, J. Org. Chem. 2022, 87, 10285-10297;
G. Song, D.-Z. Nong, Q. Li, Y. Yan, G. Li, J. Fan, W. Zhang, R. Cao, C. Wang, J. Xiao, D. Xue, ACS Catal. 2022. 12, 15590-15599.
 
B. J. Shields, B. Kudisch, G. D. Scholes, A. G. Doyle, J. Am. Chem. Soc. 2018, 140, 3035-3039;
R. Sun, Y. Qin, S. Ruccolo, C. Schnedermann, C. Costentin, D. G. Nocera, J. Am. Chem. Soc. 2019, 141, 89-93;
S. I. Ting, S. Garakyaraghi, C. M. Taliaferro, B. J. Shields, G. D. Scholes, F. N. Castellano, A. G. Doyle, J. Am. Chem. Soc. 2020, 142, 5800-5810;
N. A. Till, S. Oh, D. W. C. MacMillan, M. J. Bird, J. Am. Chem. Soc. 2021, 143, 9332-9337;
S. I. Ting, W. L. Williams, A. G. Doyle, J. Am. Chem. Soc. 2022, 144, 5575-5582.
 
D. A. Cagan, D. Bím, B. Silva, N. P. Kazmierczak, B. J. McNicholas, R. G. Hadt, J. Am. Chem. Soc. 2022, 144, 6516-6531.
S. Bajo, G. Laidlaw, A. R. Kennedy, S. Sproules, D. J. Nelson, Organometallics 2017, 36, 1662-1672.
For details, see Supporting Information.
The iodide salt could play a role in stabilizing low valent nickel species: C. Amatore, M. Azzabi, A. Jutand, J. Am. Chem. Soc. 1991, 113, 8375-8384.
The promoting effect of TBAI could arise from a halogen exchange reaction:
A. Klapars, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124, 14844-14845;
A. A. Cant, R. Bhalla, S. L. Pimlott, A. Sutherland, Chem. Commun. 2012, 48, 3993-3995;
L. Li, W. Liu, X. Mu, Z. Mi, C.-J. Li, Nat. Protoc. 2016, 11, 1948-1954;
Y. Feng, H. Luo, W. Zheng, S. Matsunaga, L. Lin, ACS Catal. 2022, 12, 11089-11096.
T. Kerackian, A. Reina, T. Krachko, H. Boddaert, D. Bouyssi, N. Monteiro, A. Amgoune, Synlett 2021, 32, 1531-1536.
 
M. Kamimori, H. Sakuragi, T. Suehiro, K. Tokumaru, M. Yoshida, Bull. Chem. Soc. Jpn. 1977, 50, 1195-1200;
Y. Yan, J. Sun, G. Li, L. Yang, W. Zhang, R. Cao, C. Wang, J. Xiao, D. Xue, Org. Lett. 2022, 24, 2271-2275.
Organic amine could act as an electron donor to reduce Ni(II) to Ni(I) under irradiation: see Ref. [12a].

Auteurs

Geyang Song (G)

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.

Qi Li (Q)

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.

Ding-Zhan Nong (DZ)

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.

Jiameng Song (J)

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.

Gang Li (G)

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.

Chao Wang (C)

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.

Jianliang Xiao (J)

Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.

Dong Xue (D)

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.

Classifications MeSH