New insights into the properties, functions, and aging of skeletal stem cells.
Aging
Bone development
Bone regeneration
Skeletal stem cells
Journal
Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA
ISSN: 1433-2965
Titre abrégé: Osteoporos Int
Pays: England
ID NLM: 9100105
Informations de publication
Date de publication:
Aug 2023
Aug 2023
Historique:
received:
24
09
2022
accepted:
27
03
2023
medline:
31
7
2023
pubmed:
18
4
2023
entrez:
17
4
2023
Statut:
ppublish
Résumé
Bone-related diseases pose a major health burden for modern society. Bone is one of the organs that rely on stem cell function to maintain tissue homeostasis. Stem cell therapy has emerged as an effective new strategy to repair and replace damaged tissue. Although research on bone marrow mesenchymal stem cells has been conducted over the last few decades, the identity and definition of the true skeletal stem cell population remains controversial. Due to technological advances, some progress has been made in the prospective separation and function research of purified skeletal stem cells. Here, we reviewed the recent progress of highly purified skeletal stem cells, their function in bone development and repair, and the impact of aging on skeletal stem cells. Various studies on animal and human models distinguished and isolated skeletal stem cells using different surface markers based on flow-cytometry-activated cell sorting. The roles of different types of skeletal stem cells in bone growth, remodeling, and repair are gradually becoming clear. Thanks to technological advances, SSCs can be specifically identified and purified for functional testing and molecular analysis. The basic features of SSCs and their roles in bone development and repair and the effects of aging on SSCs are gradually being elucidated. Future mechanistic studies can help to develop new therapeutic interventions to improve various types of skeletal diseases and enhance the regenerative potential of SSCs.
Identifiants
pubmed: 37069243
doi: 10.1007/s00198-023-06736-4
pii: 10.1007/s00198-023-06736-4
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1311-1321Informations de copyright
© 2023. International Osteoporosis Foundation and Bone Health and Osteoporosis Foundation.
Références
Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241(4861):58–62
doi: 10.1126/science.2898810
pubmed: 2898810
Laurenti E, Göttgens B (2018) From haematopoietic stem cells to complex differentiation landscapes. Nature 553(7689):418–426. https://doi.org/10.1038/nature25022
doi: 10.1038/nature25022
pubmed: 29364285
pmcid: 6555401
Tare RS, Babister JC, Kanczler J, Oreffo ROC (2008) Skeletal stem cells: phenotype, biology and environmental niches informing tissue regeneration. Mol Cell Endocrinol 288(1–2):11–21. https://doi.org/10.1016/j.mce.2008.02.017
doi: 10.1016/j.mce.2008.02.017
pubmed: 18395331
Lv F-J, Tuan RS, Cheung KMC, Leung VYL (2014) Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32(6):1408–1419. https://doi.org/10.1002/stem.1681
doi: 10.1002/stem.1681
pubmed: 24578244
Chan CKF, Seo EY, Chen JY, Lo D, McArdle A, Sinha R, Tevlin R, Seita J, Vincent-Tompkins J, Wearda T, Lu W-J, Senarath-Yapa K, Chung MT, Marecic O, Tran M, Yan KS, Upton R, Walmsley GG, Lee AS, Sahoo D, Kuo CJ, Weissman IL, Longaker MT (2015) Identification and specification of the mouse skeletal stem cell. Cell 160(1–2):285–298. https://doi.org/10.1016/j.cell.2014.12.002
doi: 10.1016/j.cell.2014.12.002
pubmed: 25594184
pmcid: 4297645
Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834. https://doi.org/10.1038/nature09262
doi: 10.1038/nature09262
pubmed: 20703299
pmcid: 3146551
Ono N, Ono W, Mizoguchi T, Nagasawa T, Frenette PS, Kronenberg HM (2014) Vasculature-associated cells expressing nestin in developing bones encompass early cells in the osteoblast and endothelial lineage. Dev Cell 29(3):330–339. https://doi.org/10.1016/j.devcel.2014.03.014
doi: 10.1016/j.devcel.2014.03.014
pubmed: 24823376
pmcid: 4083679
Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ (2014) Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15(2):154–168. https://doi.org/10.1016/j.stem.2014.06.008
doi: 10.1016/j.stem.2014.06.008
pubmed: 24953181
pmcid: 4127103
Baryawno N, Przybylski D, Kowalczyk MS, Kfoury Y, Severe N, Gustafsson K, Kokkaliaris KD, Mercier F, Tabaka M, Hofree M, Dionne D, Papazian A, Lee D, Ashenberg O, Subramanian A, Vaishnav ED, Rozenblatt-Rosen O, Regev A, Scadden DT (2019) A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177(7). https://doi.org/10.1016/j.cell.2019.04.040
Greenbaum A, Hsu Y-MS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495(7440):227–230. https://doi.org/10.1038/nature11926
doi: 10.1038/nature11926
pubmed: 23434756
pmcid: 3600148
Asada N, Kunisaki Y, Pierce H, Wang Z, Fernandez NF, Birbrair A, Ma’ayan A, Frenette PS (2017) Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat Cell Biol 19(3):214–223. https://doi.org/10.1038/ncb3475
doi: 10.1038/ncb3475
pubmed: 28218906
pmcid: 5467892
Matsushita Y, Nagata M, Kozloff KM, Welch JD, Mizuhashi K, Tokavanich N, Hallett SA, Link DC, Nagasawa T, Ono W, Ono N (2020) A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nat Commun 11(1):332. https://doi.org/10.1038/s41467-019-14029-w
doi: 10.1038/s41467-019-14029-w
pubmed: 31949165
pmcid: 6965122
Worthley DL, Churchill M, Compton JT, Tailor Y, Rao M, Si Y, Levin D, Schwartz MG, Uygur A, Hayakawa Y, Gross S, Renz BW, Setlik W, Martinez AN, Chen X, Nizami S, Lee HG, Kang HP, Caldwell J-M, Asfaha S, Westphalen CB, Graham T, Jin G, Nagar K, Wang H, Kheirbek MA, Kolhe A, Carpenter J, Glaire M, Nair A, Renders S, Manieri N, Muthupalani S, Fox JG, Reichert M, Giraud AS, Schwabe RF, Pradere J-P, Walton K, Prakash A, Gumucio D, Rustgi AK, Stappenbeck TS, Friedman RA, Gershon MD, Sims P, Grikscheit T, Lee FY, Karsenty G, Mukherjee S, Wang TC (2015) Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 160(1–2):269–284. https://doi.org/10.1016/j.cell.2014.11.042
doi: 10.1016/j.cell.2014.11.042
pubmed: 25594183
pmcid: 4436082
Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank A-M, Bocian C, Woelk L, Fan H, Logan DW, Schürmann A, Saraiva LR, Schulz TJ (2017) Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20(6). https://doi.org/10.1016/j.stem.2017.02.009
Chan CKF, Lindau P, Jiang W, Chen JY, Zhang LF, Chen C-C, Seita J, Sahoo D, Kim J-B, Lee A, Park S, Nag D, Gong Y, Kulkarni S, Luppen CA, Theologis AA, Wan DC, DeBoer A, Seo EY, Vincent-Tompkins JD, Loh K, Walmsley GG, Kraft DL, Wu JC, Longaker MT, Weissman IL (2013) Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells. Proc Natl Acad Sci USA 110(31):12643–12648. https://doi.org/10.1073/pnas.1310212110
doi: 10.1073/pnas.1310212110
pubmed: 23858471
pmcid: 3732968
Chan CKF, Gulati GS, Sinha R, Tompkins JV, Lopez M, Carter AC, Ransom RC, Reinisch A, Wearda T, Murphy M, Brewer RE, Koepke LS, Marecic O, Manjunath A, Seo EY, Leavitt T, Lu W-J, Nguyen A, Conley SD, Salhotra A, Ambrosi TH, Borrelli MR, Siebel T, Chan K, Schallmoser K, Seita J, Sahoo D, Goodnough H, Bishop J, Gardner M, Majeti R, Wan DC, Goodman S, Weissman IL, Chang HY, Longaker MT (2018) Identification of the human skeletal stem cell. Cell 175(1). https://doi.org/10.1016/j.cell.2018.07.029
St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13(16):2072–2086
doi: 10.1101/gad.13.16.2072
pubmed: 10465785
pmcid: 316949
Kobayashi T, Soegiarto DW, Yang Y, Lanske B, Schipani E, McMahon AP, Kronenberg HM (2005) Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP. J Clin Invest 115(7):1734–1742
doi: 10.1172/JCI24397
pubmed: 15951842
pmcid: 1143590
Mak KK, Kronenberg HM, Chuang P-T, Mackem S, Yang Y (2008) Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy. Development 135(11):1947–1956. https://doi.org/10.1242/dev.018044
doi: 10.1242/dev.018044
pubmed: 18434416
Abad V, Meyers JL, Weise M, Gafni RI, Barnes KM, Nilsson O, Bacher JD, Baron J (2002) The role of the resting zone in growth plate chondrogenesis. Endocrinology 143(5):1851–1857
doi: 10.1210/endo.143.5.8776
pubmed: 11956168
Mizuhashi K, Ono W, Matsushita Y, Sakagami N, Takahashi A, Saunders TL, Nagasawa T, Kronenberg HM, Ono N (2018) Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature 563(7730):254–258. https://doi.org/10.1038/s41586-018-0662-5
doi: 10.1038/s41586-018-0662-5
pubmed: 30401834
pmcid: 6251707
Newton PT, Li L, Zhou B, Schweingruber C, Hovorakova M, Xie M, Sun X, Sandhow L, Artemov AV, Ivashkin E, Suter S, Dyachuk V, El Shahawy M, Gritli-Linde A, Bouderlique T, Petersen J, Mollbrink A, Lundeberg J, Enikolopov G, Qian H, Fried K, Kasper M, Hedlund E, Adameyko I, Sävendahl L, Chagin AS (2019) A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature 567(7747):234–238. https://doi.org/10.1038/s41586-019-0989-6
doi: 10.1038/s41586-019-0989-6
pubmed: 30814736
Olsen BR, Reginato AM, Wang W (2000) Bone development. Annu Rev Cell Dev Biol 16:191–220
doi: 10.1146/annurev.cellbio.16.1.191
pubmed: 11031235
Debnath S, Yallowitz AR, McCormick J, Lalani S, Zhang T, Xu R, Li N, Liu Y, Yang YS, Eiseman M, Shim J-H, Hameed M, Healey JH, Bostrom MP, Landau DA, Greenblatt MB (2018) Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562(7725):133–139. https://doi.org/10.1038/s41586-018-0554-8
doi: 10.1038/s41586-018-0554-8
pubmed: 30250253
pmcid: 6193396
Park D, Spencer JA, Koh BI, Kobayashi T, Fujisaki J, Clemens TL, Lin CP, Kronenberg HM, Scadden DT (2012) Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10(3):259–272. https://doi.org/10.1016/j.stem.2012.02.003
doi: 10.1016/j.stem.2012.02.003
pubmed: 22385654
pmcid: 3652251
Grcevic D, Pejda S, Matthews BG, Repic D, Wang L, Li H, Kronenberg MS, Jiang X, Maye P, Adams DJ, Rowe DW, Aguila HL, Kalajzic I (2012) In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells 30(2):187–196. https://doi.org/10.1002/stem.780
doi: 10.1002/stem.780
pubmed: 22083974
Ortinau LC, Wang H, Lei K, Deveza L, Jeong Y, Hara Y, Grafe I, Rosenfeld SB, Lee D, Lee B, Scadden DT, Park D (2019) Identification of functionally distinct Mx1+αSMA+ periosteal skeletal stem cells. Cell Stem Cell 25(6). https://doi.org/10.1016/j.stem.2019.11.003
Shi Y, He G, Lee W-C, McKenzie JA, Silva MJ, Long F (2017) Gli1 identifies osteogenic progenitors for bone formation and fracture repair. Nat Commun 8(1):2043. https://doi.org/10.1038/s41467-017-02171-2
doi: 10.1038/s41467-017-02171-2
pubmed: 29230039
pmcid: 5725597
Jeffery EC, Mann TLA, Pool JA, Zhao Z, Morrison SJ (2022) Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair. Cell Stem Cell 29(11). https://doi.org/10.1016/j.stem.2022.10.002
Zhao H, Feng J, Ho T-V, Grimes W, Urata M, Chai Y (2015) The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat Cell Biol 17(4):386–396. https://doi.org/10.1038/ncb3139
doi: 10.1038/ncb3139
pubmed: 25799059
pmcid: 4380556
Xu Y, Malladi P, Chiou M, Longaker MT (2007) Isolation and characterization of posterofrontal/sagittal suture mesenchymal cells in vitro. Plast Reconstr Surg 119(3):819–829
doi: 10.1097/01.prs.0000255540.91987.a0
pubmed: 17312483
Maruyama T (2019) Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. Keio J Med 68(2):42. https://doi.org/10.2302/kjm.68-003-ABST
doi: 10.2302/kjm.68-003-ABST
pubmed: 31243185
Maruyama T, Jeong J, Sheu T-J, Hsu W (2016) Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. Nat Commun 7:10526. https://doi.org/10.1038/ncomms10526
doi: 10.1038/ncomms10526
pubmed: 26830436
pmcid: 4740445
Ransom RC, Hunter DJ, Hyman S, Singh G, Ransom SC, Shen EZ, Perez KC, Gillette M, Li J, Liu B, Brunski JB, Helms JA (2016) Axin2-expressing cells execute regeneration after skeletal injury. Sci Rep 6:36524. https://doi.org/10.1038/srep36524
doi: 10.1038/srep36524
pubmed: 27853243
pmcid: 5113299
Martin JF, Olson EN (2000) Identification of a prx1 limb enhancer. Genesis 26(4):225–229
doi: 10.1002/(SICI)1526-968X(200004)26:4<225::AID-GENE10>3.0.CO;2-F
pubmed: 10748458
Kawanami A, Matsushita T, Chan YY, Murakami S (2009) Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. Biochem Biophys Res Commun 386(3):477–482. https://doi.org/10.1016/j.bbrc.2009.06.059
doi: 10.1016/j.bbrc.2009.06.059
pubmed: 19538944
pmcid: 2742350
Ouyang Z, Chen Z, Ishikawa M, Yue X, Kawanami A, Leahy P, Greenfield EM, Murakami S (2014) Prx1 and 3.2kb Col1a1 promoters target distinct bone cell populations in transgenic mice. Bone 58:136–145. https://doi.org/10.1016/j.bone.2013.10.016
doi: 10.1016/j.bone.2013.10.016
pubmed: 24513582
Wilk K, Yeh S-CA, Mortensen LJ, Ghaffarigarakani S, Lombardo CM, Bassir SH, Aldawood ZA, Lin CP, Intini G (2017) Postnatal Calvarial skeletal stem cells expressing PRX1 reside exclusively in the calvarial sutures and are required for bone regeneration. Stem Cell Reports 8(4):933–946. https://doi.org/10.1016/j.stemcr.2017.03.002
doi: 10.1016/j.stemcr.2017.03.002
pubmed: 28366454
pmcid: 5390237
He J, Yan J, Wang J, Zhao L, Xin Q, Zeng Y, Sun Y, Zhang H, Bai Z, Li Z, Ni Y, Gong Y, Li Y, He H, Bian Z, Lan Y, Ma C, Bian L, Zhu H, Liu B, Yue R (2021) Dissecting human embryonic skeletal stem cell ontogeny by single-cell transcriptomic and functional analyses. Cell Res 31(7):742–757. https://doi.org/10.1038/s41422-021-00467-z
doi: 10.1038/s41422-021-00467-z
pubmed: 33473154
pmcid: 8249634
Kronenberg HM (2007) The role of the perichondrium in fetal bone development. Ann N Y Acad Sci 1116:59–64
doi: 10.1196/annals.1402.059
pubmed: 18083921
Carlevaro MF, Cermelli S, Cancedda R, Descalzi Cancedda F (2000) Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. J Cell Sci 113(Pt 1):59–69
doi: 10.1242/jcs.113.1.59
pubmed: 10591625
Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5(6):623–628
doi: 10.1038/9467
pubmed: 10371499
Murphy MP, Koepke LS, Lopez MT, Tong X, Ambrosi TH, Gulati GS, Marecic O, Wang Y, Ransom RC, Hoover MY, Steininger H, Zhao L, Walkiewicz MP, Quarto N, Levi B, Wan DC, Weissman IL, Goodman SB, Yang F, Longaker MT, Chan CKF (2020) Articular cartilage regeneration by activated skeletal stem cells. Nat Med 26(10):1583–1592. https://doi.org/10.1038/s41591-020-1013-2
doi: 10.1038/s41591-020-1013-2
pubmed: 32807933
pmcid: 7704061
Krishnakumar GS, Roffi A, Reale D, Kon E, Filardo G (2017) Clinical application of bone morphogenetic proteins for bone healing: a systematic review. Int Orthop 41(6):1073–1083. https://doi.org/10.1007/s00264-017-3471-9
doi: 10.1007/s00264-017-3471-9
pubmed: 28424852
Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481(7382):457–462. https://doi.org/10.1038/nature10783
doi: 10.1038/nature10783
pubmed: 22281595
pmcid: 3270376
Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495(7440):231–235. https://doi.org/10.1038/nature11885
doi: 10.1038/nature11885
pubmed: 23434755
pmcid: 3600153
Ambrosi TH, Sinha R, Steininger HM, Hoover MY, Murphy MP, Koepke LS, Wang Y, Lu W-J, Morri M, Neff NF, Weissman IL, Longaker MT, Chan CK (2021) Distinct skeletal stem cell types orchestrate long bone skeletogenesis. Elife 10. https://doi.org/10.7554/eLife.66063
Rowe RG, Mandelbaum J, Zon LI, Daley GQ (2016) Engineering hematopoietic stem cells: lessons from development. Cell Stem Cell 18(6):707–720. https://doi.org/10.1016/j.stem.2016.05.016
doi: 10.1016/j.stem.2016.05.016
pubmed: 27257760
pmcid: 4911194
Sivaraj KK, Adams RH (2016) Blood vessel formation and function in bone. Development 143(15):2706–2715. https://doi.org/10.1242/dev.136861
doi: 10.1242/dev.136861
pubmed: 27486231
Zhang X, Xie C, Lin ASP, Ito H, Awad H, Lieberman JR, Rubery PT, Schwarz EM, O’Keefe RJ, Guldberg RE (2005) Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. J Bone Miner Res 20(12):2124–2137
doi: 10.1359/JBMR.050806
pubmed: 16294266
van Gastel N, Torrekens S, Roberts SJ, Moermans K, Schrooten J, Carmeliet P, Luttun A, Luyten FP, Carmeliet G (2012) Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. Stem Cells 30(11):2460–2471. https://doi.org/10.1002/stem.1210
doi: 10.1002/stem.1210
pubmed: 22911908
Duchamp de Lageneste O, Julien A, Abou-Khalil R, Frangi G, Carvalho C, Cagnard N, Cordier C, Conway SJ, Colnot C (2018) Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat Commun 9(1):773. https://doi.org/10.1038/s41467-018-03124-z
doi: 10.1038/s41467-018-03124-z
pubmed: 29472541
pmcid: 5823889
Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, Einhorn T, Tabin CJ, Rosen V (2006) BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 38(12):1424–1429
doi: 10.1038/ng1916
pubmed: 17099713
Salazar VS, Capelo LP, Cantù C, Zimmerli D, Gosalia N, Pregizer S, Cox K, Ohte S, Feigenson M, Gamer L, Nyman JS, Carey DJ, Economides A, Basler K, Rosen V (2019) Reactivation of a developmental Bmp2 signaling center is required for therapeutic control of the murine periosteal niche. Elife 8. https://doi.org/10.7554/eLife.42386
Conway SJ, Izuhara K, Kudo Y, Litvin J, Markwald R, Ouyang G, Arron JR, Holweg CTJ, Kudo A (2014) The role of periostin in tissue remodeling across health and disease. Cell Mol Life Sci 71(7):1279–1288. https://doi.org/10.1007/s00018-013-1494-y
doi: 10.1007/s00018-013-1494-y
pubmed: 24146092
Maruyama T, Mirando AJ, Deng C-X, Hsu W (2010) The balance of WNT and FGF signaling influences mesenchymal stem cell fate during skeletal development. Sci Signal 3(123):ra40. https://doi.org/10.1126/scisignal.2000727
doi: 10.1126/scisignal.2000727
pubmed: 20501936
pmcid: 2902546
Li X, Cao X (2006) BMP signaling and skeletogenesis. Ann N Y Acad Sci 1068:26–40
doi: 10.1196/annals.1346.006
pubmed: 16831903
Massagué J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791
doi: 10.1146/annurev.biochem.67.1.753
pubmed: 9759503
Maruyama T, Stevens R, Boka A, DiRienzo L, Chang C, Yu H-MI, Nishimori K, Morrison C, Hsu W (2021) BMPR1A maintains skeletal stem cell properties in craniofacial development and craniosynostosis. Sci Transl Med 13(583). https://doi.org/10.1126/scitranslmed.abb4416
Ferguson VL, Ayers RA, Bateman TA, Simske SJ (2003) Bone development and age-related bone loss in male C57BL/6J mice. Bone 33(3):387–398
doi: 10.1016/S8756-3282(03)00199-6
pubmed: 13678781
Josephson AM, Bradaschia-Correa V, Lee S, Leclerc K, Patel KS, Muinos Lopez E, Litwa HP, Neibart SS, Kadiyala M, Wong MZ, Mizrahi MM, Yim NL, Ramme AJ, Egol KA, Leucht P (2019) Age-related inflammation triggers skeletal stem/progenitor cell dysfunction. Proc Natl Acad Sci USA 116(14):6995–7004. https://doi.org/10.1073/pnas.1810692116
doi: 10.1073/pnas.1810692116
pubmed: 30894483
pmcid: 6452701
Gregory CA, Prockop DJ, Spees JL (2005) Non-hematopoietic bone marrow stem cells: molecular control of expansion and differentiation. Exp Cell Res 306(2):330–335
doi: 10.1016/j.yexcr.2005.03.018
pubmed: 15925588
Beerman I, Rossi DJ (2015) Epigenetic control of stem cell potential during homeostasis, aging, and disease. Cell Stem Cell 16(6):613–625. https://doi.org/10.1016/j.stem.2015.05.009
doi: 10.1016/j.stem.2015.05.009
pubmed: 26046761
pmcid: 4469343
Ambrosi TH, Goodnough LH, Steininger HM, Hoover MY, Kim E, Koepke LS, Marecic O, Zhao L, Seita J, Bishop JA, Gardner MJ, Chan CKF (2020) Geriatric fragility fractures are associated with a human skeletal stem cell defect. Aging Cell 19(7):e13164. https://doi.org/10.1111/acel.13164
doi: 10.1111/acel.13164
pubmed: 32537886
pmcid: 7370785
Ambrosi TH, Marecic O, McArdle A, Sinha R, Gulati GS, Tong X, Wang Y, Steininger HM, Hoover MY, Koepke LS, Murphy MP, Sokol J, Seo EY, Tevlin R, Lopez M, Brewer RE, Mascharak S, Lu L, Ajanaku O, Conley SD, Seita J, Morri M, Neff NF, Sahoo D, Yang F, Weissman IL, Longaker MT, Chan CKF (2021) Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 597(7875):256–262. https://doi.org/10.1038/s41586-021-03795-7
doi: 10.1038/s41586-021-03795-7
pubmed: 34381212
pmcid: 8721524
Li C-J, Xiao Y, Sun Y-C, He W-Z, Liu L, Huang M, He C, Huang M, Chen K-X, Hou J, Feng X, Su T, Guo Q, Huang Y, Peng H, Yang M, Liu G-H, Luo X-H (2022) Senescent immune cells release grancalcin to promote skeletal aging. Cell Metab 34(1):184–185. https://doi.org/10.1016/j.cmet.2021.12.003
doi: 10.1016/j.cmet.2021.12.003
pubmed: 34986333
Josephson AM, Leclerc K, Remark LH, Lopeź EM, Leucht P (2021) Systemic NF-κB-mediated inflammation promotes an aging phenotype in skeletal stem/progenitor cells. Aging (Albany NY) 13(10):13421–13429. https://doi.org/10.18632/aging.203083
doi: 10.18632/aging.203083
pubmed: 34035186
Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T (2008) Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 7(2)
Yin MJ, Yamamoto Y, Gaynor RB (1998) The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396(6706):77–80
doi: 10.1038/23948
pubmed: 9817203
Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705. https://doi.org/10.1146/annurev-physiol-030212-183653
doi: 10.1146/annurev-physiol-030212-183653
pubmed: 23140366
Abdallah BM, Kassem M (2012) New factors controlling the balance between osteoblastogenesis and adipogenesis. Bone 50(2):540–545. https://doi.org/10.1016/j.bone.2011.06.030
doi: 10.1016/j.bone.2011.06.030
pubmed: 21745614
Barinda AJ, Ikeda K, Nugroho DB, Wardhana DA, Sasaki N, Honda S, Urata R, Matoba S, Hirata K-I, Emoto N (2020) Endothelial progeria induces adipose tissue senescence and impairs insulin sensitivity through senescence associated secretory phenotype. Nat Commun 11(1):481. https://doi.org/10.1038/s41467-020-14387-w
doi: 10.1038/s41467-020-14387-w
pubmed: 31980643
pmcid: 6981212
De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW, Caligiana A, Brocculi G, Adney EM, Boeke JD, Le O, Beauséjour C, Ambati J, Ambati K, Simon M, Seluanov A, Gorbunova V, Slagboom PE, Helfand SL, Neretti N, Sedivy JM (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566(7742):73–78. https://doi.org/10.1038/s41586-018-0784-9
doi: 10.1038/s41586-018-0784-9
pubmed: 30728521
pmcid: 6519963