Comparison of learning models to predict LDPE, PET, and ABS concentrations in beach sediment based on spectral reflectance.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
17 Apr 2023
17 Apr 2023
Historique:
received:
03
07
2022
accepted:
09
04
2023
medline:
18
4
2023
entrez:
17
4
2023
pubmed:
18
4
2023
Statut:
epublish
Résumé
Microplastic (MP) contamination on land has been estimated to be 32 times higher than in the oceans, and yet there is a distinct lack of research on soil MPs compared to marine MPs. Beaches are bridges between land and ocean and present equally understudied sites of microplastic pollution. Visible-near-infrared (vis-NIR) has been applied successfully for the measurement of reflectance and prediction of low-density polyethylene (LDPE), polyethylene terephthalate (PET), and polyvinyl chloride (PVC) concentrations in soil. The rapidity and precision associated with this method make vis-NIR promising. The present study explores PCA regression and machine learning approaches for developing learning models. First, using a spectroradiometer, the spectral reflectance data was measured from treated beach sediment spiked with virgin microplastic pellets [LDPE, PET, and acrylonitrile butadiene styrene (ABS)]. Using the recorded spectral data, predictive models were developed for each microplastic using both the approaches. Both approaches generated models of good accuracy with R
Identifiants
pubmed: 37069310
doi: 10.1038/s41598-023-33207-x
pii: 10.1038/s41598-023-33207-x
pmc: PMC10110612
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6258Informations de copyright
© 2023. The Author(s).
Références
Crit Rev Food Sci Nutr. 2015;55(10):1368-82
pubmed: 24689555
Sci Total Environ. 2018 Jan 15;612:422-435
pubmed: 28863373
Sensors (Basel). 2015 Jan 20;15(1):2205-27
pubmed: 25609050
Int J Inf Technol. 2021;13(3):1039-1046
pubmed: 33681697
Environ Sci Pollut Res Int. 2018 May;25(15):14373-14396
pubmed: 29680884
Sci Total Environ. 2021 Aug 1;780:146546
pubmed: 33770602
Philos Trans R Soc Lond B Biol Sci. 2009 Jul 27;364(1526):1973-6
pubmed: 19528049
Environ Sci Technol. 2017 Dec 5;51(23):13689-13697
pubmed: 29161030
Environ Sci Technol. 2015 Aug 4;49(15):8932-47
pubmed: 26130306
Sci Total Environ. 2020 Feb 1;702:134723
pubmed: 31731131
Int J Environ Res Public Health. 2020 Feb 13;17(4):
pubmed: 32069998
Sci Total Environ. 2017 May 15;586:127-141
pubmed: 28169032
Mar Pollut Bull. 2021 May;166:112226
pubmed: 33711605
Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150202
pubmed: 26953178
Sci Rep. 2017 May 2;7(1):1362
pubmed: 28465618
Environ Pollut. 2018 Sep;240:387-395
pubmed: 29753246
Chem Soc Rev. 2014 Dec 21;43(24):8200-14
pubmed: 25156745
Environ Sci Eur. 2016;28(1):2
pubmed: 27752437
Waste Manag Res. 2018 Oct;36(10):873-897
pubmed: 30103651
Sci Total Environ. 2019 Feb 10;650(Pt 1):922-932
pubmed: 30308866
Sci Total Environ. 2020 Mar 15;708:134841
pubmed: 31791759
Glob Chang Biol. 2018 Apr;24(4):1405-1416
pubmed: 29245177
Nature. 2016 Sep 21;537(7621):488
pubmed: 27652556