Genomics of perivascular space burden unravels early mechanisms of cerebral small vessel disease.
Journal
Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
received:
10
10
2021
accepted:
15
02
2023
medline:
21
4
2023
pubmed:
18
4
2023
entrez:
17
4
2023
Statut:
ppublish
Résumé
Perivascular space (PVS) burden is an emerging, poorly understood, magnetic resonance imaging marker of cerebral small vessel disease, a leading cause of stroke and dementia. Genome-wide association studies in up to 40,095 participants (18 population-based cohorts, 66.3 ± 8.6 yr, 96.9% European ancestry) revealed 24 genome-wide significant PVS risk loci, mainly in the white matter. These were associated with white matter PVS already in young adults (N = 1,748; 22.1 ± 2.3 yr) and were enriched in early-onset leukodystrophy genes and genes expressed in fetal brain endothelial cells, suggesting early-life mechanisms. In total, 53% of white matter PVS risk loci showed nominally significant associations (27% after multiple-testing correction) in a Japanese population-based cohort (N = 2,862; 68.3 ± 5.3 yr). Mendelian randomization supported causal associations of high blood pressure with basal ganglia and hippocampal PVS, and of basal ganglia PVS and hippocampal PVS with stroke, accounting for blood pressure. Our findings provide insight into the biology of PVS and cerebral small vessel disease, pointing to pathways involving extracellular matrix, membrane transport and developmental processes, and the potential for genetically informed prioritization of drug targets.
Identifiants
pubmed: 37069360
doi: 10.1038/s41591-023-02268-w
pii: 10.1038/s41591-023-02268-w
pmc: PMC10115645
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
950-962Subventions
Organisme : NHLBI NIH HHS
ID : HHSN268201500001I
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG031287
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG054076
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG049607
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG025941
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG059725
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG049505
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG052409
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS017950
Pays : United States
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/F019394/1
Pays : United Kingdom
Organisme : Medical Research Council
Pays : United Kingdom
Investigateurs
Quentin Le Grand
(Q)
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2023. The Author(s).
Références
Pollock, H., Hutchings, M., Weller, R. O. & Zhang, E. T. Perivascular spaces in the basal ganglia of the human brain: their relationship to lacunes. J. Anat. 191, 337–346 (1997).
pubmed: 9418990
pmcid: 1467691
doi: 10.1046/j.1469-7580.1997.19130337.x
Wardlaw, J. M. et al. Perivascular spaces in the brain: anatomy, physiology and pathology. Nat. Rev. Neurol. 16, 137–153 (2020).
pubmed: 32094487
doi: 10.1038/s41582-020-0312-z
Wardlaw, J. M. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12, 822–838 (2013).
pubmed: 23867200
pmcid: 3714437
doi: 10.1016/S1474-4422(13)70124-8
Jessen, N. A., Munk, A. S. F., Lundgaard, I. & Nedergaard, M. The glymphatic system: a beginner’s guide. Neurochem. Res. 40, 2583–2599 (2015).
pubmed: 25947369
pmcid: 4636982
doi: 10.1007/s11064-015-1581-6
Sargurupremraj, M. et al. Cerebral small vessel disease genomics and its implications across the lifespan. Nat. Commun. 11, 6285 (2020).
pubmed: 33293549
pmcid: 7722866
doi: 10.1038/s41467-020-19111-2
Debette, S., Schilling, S., Duperron, M. G., Larsson, S. C. & Markus, H. S. Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and meta-analysis. JAMA Neurol. 76, 81–94 (2019).
pubmed: 30422209
doi: 10.1001/jamaneurol.2018.3122
Mestre, H., Kostrikov, S., Mehta, R. I. & Nedergaard, M. Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clin. Sci. (Lond.) 131, 2257–2274 (2017).
pubmed: 28798076
doi: 10.1042/CS20160381
Deramecourt, V. et al. Staging and natural history of cerebrovascular pathology in dementia. Neurology 78, 1043–1050 (2012).
pubmed: 22377814
pmcid: 3317531
doi: 10.1212/WNL.0b013e31824e8e7f
Bacyinski, A., Xu, M., Wang, W. & Hu, J. The paravascular pathway for brain waste clearance: current understanding, significance and controversy. Front. Neuroanat. 11, 101 (2017).
pubmed: 29163074
pmcid: 5681909
doi: 10.3389/fnana.2017.00101
Duperron, M. G. et al. High dilated perivascular space burden: a new MRI marker for risk of intracerebral hemorrhage. Neurobiol. Aging 84, 158–165 (2019).
pubmed: 31629114
doi: 10.1016/j.neurobiolaging.2019.08.031
Charidimou, A. et al. MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology 88, 1157–1164 (2017).
pubmed: 28228568
pmcid: 5373782
doi: 10.1212/WNL.0000000000003746
Tsai, H. H. et al. Centrum semiovale perivascular space and amyloid deposition in spontaneous intracerebral hemorrhage. Stroke 52, 2356–2362 (2021).
pubmed: 33874751
pmcid: 8989045
doi: 10.1161/STROKEAHA.120.032139
Charidimou, A. et al. The Boston criteria version 2.0 for cerebral amyloid angiopathy: a multicentre, retrospective, MRI-neuropathology diagnostic accuracy study. Lancet Neurol. 21, 714–725 (2022).
pubmed: 35841910
doi: 10.1016/S1474-4422(22)00208-3
Mestre, H. et al. Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science 367, eaax7171 (2020).
pubmed: 32001524
pmcid: 7375109
doi: 10.1126/science.aax7171
Månberg, A. et al. Altered perivascular fibroblast activity precedes ALS disease onset. Nat. Med 27, 640–646 (2021).
pubmed: 33859435
pmcid: 7613336
doi: 10.1038/s41591-021-01295-9
Duperron, M. G. et al. Burden of dilated perivascular spaces, an emerging marker of cerebral small vessel disease, is highly heritable. Stroke 49, 282–287 (2018).
pubmed: 29311265
doi: 10.1161/STROKEAHA.117.019309
Yao, M. et al. Hippocampal perivascular spaces are related to aging and blood pressure but not to cognition. Neurobiol. Aging 35, 2118–2125 (2014).
pubmed: 24731517
doi: 10.1016/j.neurobiolaging.2014.03.021
Bouvy, W. H. et al. Visualization of perivascular spaces and perforating arteries with 7 T magnetic resonance imaging. Invest. Radiol. 49, 307–313 (2014).
pubmed: 24473365
doi: 10.1097/RLI.0000000000000027
Psaty, B. M. et al. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: design of prospective meta-analyses of genome-wide association studies from 5 cohorts. Circ. Cardiovasc. Genet. 2, 73–80 (2009).
pubmed: 20031568
pmcid: 2875693
doi: 10.1161/CIRCGENETICS.108.829747
Bordes, C., Sargurupremraj, M., Mishra, A. & Debette, S. Genetics of common cerebral small vessel disease. Nat. Rev. Neurol. 18, 84–101 (2022).
pubmed: 34987231
doi: 10.1038/s41582-021-00592-8
Joutel, A., Haddad, I., Ratelade, J. & Nelson, M. T. Perturbations of the cerebrovascular matrisome: a convergent mechanism in small vessel disease of the brain? J. Cereb. Blood Flow. Metab. 36, 143–157 (2016).
pubmed: 25853907
pmcid: 4758555
doi: 10.1038/jcbfm.2015.62
Traylor, M. et al. Genetic basis of lacunar stroke: a pooled analysis of individual patient data and genome-wide association studies. 20(5):351-361 Lancet Neurol. 20, 351–361 (2021).
Persyn, E. et al. Genome-wide association study of MRI markers of cerebral small vessel disease in 42,310 participants. Nat. Commun. 11, 2175 (2020).
pubmed: 32358547
pmcid: 7195435
doi: 10.1038/s41467-020-15932-3
Simon, A. J. et al. Mutations in STN1 cause Coats plus syndrome and are associated with genomic and telomere defects. J. Exp. Med. 213, 1429–1440 (2016).
pubmed: 27432940
pmcid: 4986528
doi: 10.1084/jem.20151618
Whittaker, E. et al. Systematic review of cerebral phenotypes associated with monogenic cerebral small-vessel disease. J. Am. Heart Assoc. 11, e025629 (2022).
pubmed: 35699195
pmcid: 9238640
doi: 10.1161/JAHA.121.025629
Piantino, J. et al. Characterization of MR imaging-visible perivascular spaces in the white matter of healthy adolescents at 3T. AJNR Am. J. Neuroradiol. 41, 2139–2145 (2020).
pubmed: 33033050
pmcid: 7658833
doi: 10.3174/ajnr.A6789
Rajani, R. M. et al. Reversal of endothelial dysfunction reduces white matter vulnerability in cerebral small vessel disease in rats. Sci. Transl. Med. 10, eaam9507 (2018).
pubmed: 29973407
doi: 10.1126/scitranslmed.aam9507
Carelli, V. et al. Syndromic parkinsonism and dementia associated with OPA1 missense mutations. Ann. Neurol. 78, 21–38 (2015).
pubmed: 25820230
pmcid: 5008165
doi: 10.1002/ana.24410
Herkenne, S. et al. Developmental and tumor angiogenesis requires the mitochondria-shaping protein Opa1. Cell Metab. 31, 987–1003.e1008 (2020).
pubmed: 32315597
doi: 10.1016/j.cmet.2020.04.007
Backhouse, E. V. et al. Early life predictors of late life cerebral small vessel disease in four prospective cohort studies. Brain 144, 3769–3778 (2021).
pubmed: 34581779
pmcid: 8719837
doi: 10.1093/brain/awab331
Zhao, B. et al. Common genetic variation influencing human white matter microstructure. Science 372, eabf3736 (2021).
pubmed: 34140357
pmcid: 8370718
doi: 10.1126/science.abf3736
Grasby, K. L. et al. The genetic architecture of the human cerebral cortex. Science 367, eaay6690 (2020).
pubmed: 32193296
pmcid: 7295264
doi: 10.1126/science.aay6690
Mok, V. et al. Race-ethnicity and cerebral small vessel disease – comparison between Chinese and White populations. Int. J. Stroke 9, 36–42 (2014).
pubmed: 24661839
doi: 10.1111/ijs.12270
Akinyemi, R. O. et al. Stroke in Africa: profile, progress, prospects and priorities. Nat. Rev. Neurol. 17, 634–656 (2021).
pubmed: 34526674
pmcid: 8441961
doi: 10.1038/s41582-021-00542-4
Mollink, J. et al. The spatial correspondence and genetic influence of interhemispheric connectivity with white matter microstructure. Nat. Neurosci. 22, 809–819 (2019).
pubmed: 30988526
pmcid: 6517273
doi: 10.1038/s41593-019-0379-2
Gaire, B. P., Sapkota, A., Song, M. R. & Choi, J. W. Lysophosphatidic acid receptor 1 (LPA1) plays critical roles in microglial activation and brain damage after transient focal cerebral ischemia. J. Neuroinflammation 16, 170 (2019).
pubmed: 31429777
pmcid: 6701099
doi: 10.1186/s12974-019-1555-8
Gross, I. & Brauer, A. U. Modulation of lysophosphatidic acid (LPA) receptor activity: the key to successful neural regeneration? Neural Regen. Res. 15, 53–54 (2020).
pubmed: 31535643
doi: 10.4103/1673-5374.264452
Hisaoka-Nakashima, K. et al. Mirtazapine increases glial cell line-derived neurotrophic factor production through lysophosphatidic acid 1 receptor-mediated extracellular signal-regulated kinase signaling in astrocytes. Eur. J. Pharm. 860, 172539 (2019).
doi: 10.1016/j.ejphar.2019.172539
Allanore, Y. et al. Lysophosphatidic acid receptor 1 antagonist SAR100842 for patients with diffuse cutaneous systemic sclerosis: a double-blind, randomized, eight-week placebo-controlled study followed by a sixteen-week open-label extension study. Arthritis Rheumatol. 70, 1634–1643 (2018).
pubmed: 29732731
doi: 10.1002/art.40547
Stenman, J. M. et al. Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322, 1247–1250 (2008).
pubmed: 19023080
doi: 10.1126/science.1164594
Chavali, M. et al. Wnt-dependent oligodendroglial-endothelial interactions regulate white matter vascularization and attenuate injury. Neuron 108, 1130–1145.e1135 (2020).
pubmed: 33086038
pmcid: 7769920
doi: 10.1016/j.neuron.2020.09.033
Capone, C. et al. Reducing Timp3 or vitronectin ameliorates disease manifestations in CADASIL mice. Ann. Neurol. 79, 387–403 (2016).
pubmed: 26648042
pmcid: 5359978
doi: 10.1002/ana.24573
Tanaka, T. et al. Plasma proteomic signatures predict dementia and cognitive impairment. Alzheimers Dement. (N. Y.) 6, e12018 (2020).
pubmed: 32607407
Jakobsson, L., Domogatskaya, A., Tryggvason, K., Edgar, D. & Claesson-Welsh, L. Laminin deposition is dispensable for vasculogenesis but regulates blood vessel diameter independent of flow. FASEB J. 22, 1530–1539 (2008).
pubmed: 18073332
doi: 10.1096/fj.07-9617com
Yao, Y., Chen, Z. L., Norris, E. H. & Strickland, S. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat. Commun. 5, 3413 (2014).
pubmed: 24583950
doi: 10.1038/ncomms4413
Chung, J. et al. Genome-wide association study of cerebral small vessel disease reveals established and novel loci. Brain 142, 3176–3189 (2019).
pubmed: 31430377
pmcid: 6763741
doi: 10.1093/brain/awz233
Armstrong, N. J. et al. Common genetic variation indicates separate causes for periventricular and deep white matter hyperintensities. Stroke 51, 2111–2121 (2020).
pubmed: 32517579
pmcid: 7365038
doi: 10.1161/STROKEAHA.119.027544
Hadano, S. et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat. Genet. 29, 166–173 (2001).
pubmed: 11586298
doi: 10.1038/ng1001-166
Bindesbøll, C. et al. NBEAL1 controls SREBP2 processing and cholesterol metabolism and is a susceptibility locus for coronary artery disease. Sci. Rep. 10, 4528 (2020).
pubmed: 32161285
pmcid: 7066131
doi: 10.1038/s41598-020-61352-0
Wang, W. W., Gallo, L., Jadhav, A., Hawkins, R. & Parker, C. G. The druggability of solute carriers. J. Med. Chem. 63, 3834–3867 (2020).
pubmed: 31774679
doi: 10.1021/acs.jmedchem.9b01237
Dewulf, J. P. et al. SLC13A3 variants cause acute reversible leukoencephalopathy and α-ketoglutarate accumulation. Ann. Neurol. 85, 385–395 (2019).
pubmed: 30635937
doi: 10.1002/ana.25412
Beyens, A. et al. Arterial tortuosity syndrome: 40 new families and literature review. Genet. Med. 20, 1236–1245 (2018).
pubmed: 29323665
doi: 10.1038/gim.2017.253
Chen, Y. C. et al. Correlation between internal carotid artery tortuosity and imaging of cerebral small vessel disease. Front. Neurol. 11, 567232 (2020).
pubmed: 33193005
pmcid: 7642469
doi: 10.3389/fneur.2020.567232
Wang, C. et al. Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis. Nat. Genet. 44, 254–256 (2012).
pubmed: 22327515
doi: 10.1038/ng.1077
Ho, H. T., Dahlin, A. & Wang, J. Expression profiling of solute carrier gene families at the blood-CSF barrier. Front. Pharm. 3, 154 (2012).
doi: 10.3389/fphar.2012.00154
Wang, H. et al. Structure, function, and genomic organization of human Na
pubmed: 10794676
doi: 10.1152/ajpcell.2000.278.5.C1019
Mestre, H. et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat. Commun. 9, 4878 (2018).
pubmed: 30451853
pmcid: 6242982
doi: 10.1038/s41467-018-07318-3
Chen, Z. L. et al. Ablation of astrocytic laminin impairs vascular smooth muscle cell function and leads to hemorrhagic stroke. J. Cell Biol. 202, 381–395 (2013).
pubmed: 23857767
pmcid: 3718965
doi: 10.1083/jcb.201212032
Rannikmäe, K. et al. COL4A2 is associated with lacunar ischemic stroke and deep ICH: meta-analyses among 21,500 cases and 40,600 controls. Neurology 89, 1829–1839 (2017).
pubmed: 28954878
pmcid: 5664302
doi: 10.1212/WNL.0000000000004560
Ballerini, L. et al. Computational quantification of brain perivascular space morphologies: associations with vascular risk factors and white matter hyperintensities. A study in the Lothian Birth Cohort 1936. Neuroimage Clin. 25, 102120 (2020).
pubmed: 31887717
doi: 10.1016/j.nicl.2019.102120
Bouvy, W. H. et al. Perivascular spaces on 7 Tesla brain MRI are related to markers of small vessel disease but not to age or cardiovascular risk factors. J. Cereb. Blood Flow. Metab. 36, 1708–1717 (2016).
pubmed: 27154503
pmcid: 5076789
doi: 10.1177/0271678X16648970
Mishra, A. et al. Gene-mapping study of extremes of cerebral small vessel disease reveals TRIM47 as a strong candidate. Brain 30, 1992–2007 (2022).
doi: 10.1093/brain/awab432
Winkler, T. W. et al. Quality control and conduct of genome-wide association meta-analyses. Nat. Protoc. 9, 1192–1212 (2014).
pubmed: 24762786
pmcid: 4083217
doi: 10.1038/nprot.2014.071
Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, S361–363 (2012).
doi: 10.1038/ng.2213
Magi, R. et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol. Genet. 26, 3639–3650 (2017).
pubmed: 28911207
pmcid: 5755684
doi: 10.1093/hmg/ddx280
Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).
pubmed: 29184056
pmcid: 5705698
doi: 10.1038/s41467-017-01261-5
Mishra, A. & Macgregor, S. VEGAS2: software for more flexible gene-based testing. Twin Res. Hum. Genet. 18, 86–91 (2015).
pubmed: 25518859
doi: 10.1017/thg.2014.79
Turley, P. et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat. Genet. 50, 229–237 (2018).
pubmed: 29292387
pmcid: 5805593
doi: 10.1038/s41588-017-0009-4
Viechtenbauer, W. Conducting meta-analysis in R with the metafor package. J. Stat. Softw. 36(3), 1–48 (2010).
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).
pubmed: 24830394
pmcid: 4022491
doi: 10.1371/journal.pgen.1004383
Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 9, 224 (2018).
pubmed: 29335400
pmcid: 5768719
doi: 10.1038/s41467-017-02317-2
Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).
pubmed: 29846171
pmcid: 5976434
doi: 10.7554/eLife.34408
Bowden, J. et al. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. Int. J. Epidemiol. 47, 1264–1278 (2018).
pubmed: 29961852
pmcid: 6124632
doi: 10.1093/ije/dyy101
Hemani, G., Tilling, K. & Davey Smith, G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 13, e1007081 (2017).
pubmed: 29149188
pmcid: 5711033
doi: 10.1371/journal.pgen.1007081
Morrison, J., Knoblauch, N., Marcus, J. H., Stephens, M. & He, X. Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nat. Genet. 52, 740–747 (2020).
pubmed: 32451458
pmcid: 7343608
doi: 10.1038/s41588-020-0631-4
Mishra, A. & MacGregor, S. A novel approach for pathway analysis of GWAS data highlights role of BMP signaling and muscle cell differentiation in colorectal cancer susceptibility. Twin Res. Hum. Genet. 20, 1–9 (2017).
pubmed: 28105966
doi: 10.1017/thg.2016.100
Amberger, J. S., Bocchini, C. A., Schiettecatte, F., Scott, A. F. & Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 43, D789–798 (2015).
pubmed: 25428349
doi: 10.1093/nar/gku1205
Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).
pubmed: 26854917
pmcid: 4767558
doi: 10.1038/ng.3506
Sakaue, S. & Okada, Y. GREP: Genome for REPositioning drugs. Bioinformatics 35, 3821–3823 (2019).
pubmed: 30859178
pmcid: 6761931
doi: 10.1093/bioinformatics/btz166
Konuma, T., Ogawa, K. & Okada, Y. Integration of genetically regulated gene expression and pharmacological library provides therapeutic drug candidates. Hum. Mol. Genet. 30, 294–304 (2021).
pubmed: 33577681
pmcid: 7928862
doi: 10.1093/hmg/ddab049