The development of bi-directionally coupled self-organizing neurovascular networks captures orientation-selective neural and hemodynamic cortical responses.

computational model cortical neural map neurovascular coupling self-organizing networks tuned response

Journal

The European journal of neuroscience
ISSN: 1460-9568
Titre abrégé: Eur J Neurosci
Pays: France
ID NLM: 8918110

Informations de publication

Date de publication:
06 2023
Historique:
revised: 13 04 2023
received: 23 09 2022
accepted: 14 04 2023
medline: 6 6 2023
pubmed: 19 4 2023
entrez: 18 4 2023
Statut: ppublish

Résumé

Networks of neurons are the primary substrate of information processing. Conversely, blood vessels in the brain are generally viewed to have physiological functions unrelated to information processing, such as the timely supply of oxygen, and other nutrients to the neural tissue. However, recent studies have shown that cerebral microvessels, like neurons, exhibit tuned responses to sensory stimuli. Tuned neural responses to sensory stimuli may be enhanced with experience-dependent Hebbian plasticity and other forms of learning. Hence, it is possible that the microvascular network might also be subject to some form of competitive learning rules during early postnatal development such that its fine-scale structure becomes optimized for metabolic delivery to a given neural micro-architecture. To explore the possibility of adaptive lateral interactions and tuned responses in cerebral microvessels, we modelled the cortical neurovascular network by interconnecting two laterally connected self-organizing networks. The afferent and lateral connections of the neural and vascular networks were defined by trainable weights. By varying the topology of lateral connectivity in the vascular network layer, we observed that the partial correspondence of feature selectivity between neural and hemodynamic responses could be explained by lateral coupling across local blood vessels such that the central domain receives an excitatory drive of more blood flow and a distal surrounding region where blood flow is reduced. Critically, our simulations suggest a new role for feedback from the vascular to the neural network because the radius of vascular perfusion determines whether the cortical neural map develops into a clustered vs. salt-and-pepper organization.

Identifiants

pubmed: 37070156
doi: 10.1111/ejn.15993
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

1929-1946

Subventions

Organisme : NIMH NIH HHS
ID : R01 MH111447
Pays : United States

Informations de copyright

© 2023 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

Références

Ahmad, A., Patel, V., Xiao, J., & Khan, M. M. (2020). The role of neurovascular system in neurodegenerative diseases. Molecular Neurobiology, 57, 4373-4393. https://doi.org/10.1007/s12035-020-02023-z
Alonso, J. M., & Martinez, L. M. (1998). Functional connectivity between simple cells and complex cells in cat striate cortex. Nature Neuroscience, 1, 395-403. https://doi.org/10.1038/1609
Bassingthwaighte, J. B., King, R. B., & Roger, S. A. (1989). Fractal nature of regional myocardial blood flow heterogeneity. Circulation Research, 65, 578-590. https://doi.org/10.1161/01.RES.65.3.578
Biesecker, K. R., Srienc, A. I., Shimoda, A. M., Agarwal, A., Bergles, D. E., Kofuji, P., & Newman, E. A. (2016). Glial cell calcium signaling mediates capillary regulation of blood flow in the retina. The Journal of Neuroscience, 36, 9435-9445. https://doi.org/10.1523/JNEUROSCI.1782-16.2016
Blinder, P., Tsai, P. S., Kaufhold, J. P., Knutsen, P. M., Suhl, H., & Kleinfeld, D. (2013). The cortical angiome: An interconnected vascular network with noncolumnar patterns of blood flow. Nature Neuroscience, 16, 889-897. https://doi.org/10.1038/nn.3426
Chander, B. S., & Chakravarthy, V. S. (2012). A computational model of neuro-glio-vascular loop interactions. PLoS ONE, 7, e48802. https://doi.org/10.1371/journal.pone.0048802
Chhabria, K., & Chakravarthy, V. S. (2016). Low-dimensional models of “neuro-glio-vascular unit” for describing neural dynamics under normal and energy-starved conditions. Frontiers in Neurology, 7, 24. https://doi.org/10.3389/fneur.2016.00024
Cho, S., Roy, A., Liu, C. J., Idiyatullin, D., Zhu, W., Zhang, Y., Zhu, X. H., O'Herron, P., Leikvoll, A., Chen, W., Kara, P., & Uğurbil, K. (2022). Cortical layer-specific differences in stimulus selectivity revealed with high-field fMRI and single-vessel resolution optical imaging of the primary visual cortex. NeuroImage, 251, 118978. https://doi.org/10.1016/j.neuroimage.2022.118978
Cholet, N., Seylaz, J., Lacombe, P., & Bonvento, G. (1997). Local uncoupling of the cerebrovascular and metabolic responses to somatosensory stimulation after neuronal nitric oxide synthase inhibition. Journal of Cerebral Blood Flow and Metabolism, 17, 1191-1201. https://doi.org/10.1097/00004647-199711000-00008
Connor, C. E., Brincat, S. L., & Pasupathy, A. (2007). Transformation of shape information in the ventral pathway. Current Opinion in Neurobiology, 17, 140-147. https://doi.org/10.1016/j.conb.2007.03.002
Crair, M. C., Gillespie, D. C., & Stryker, M. P. (1998). The role of visual experience in the development of columns in cat visual cortex. Science, 279(80), 566-570. https://doi.org/10.1126/science.279.5350.566
Devor, A., Tian, P., Nishimura, N., Teng, I. C., Hillman, E. M. C., Narayanan, S. N., Ulbert, I., Boas, D. A., Kleinfeld, D., & Dale, A. M. (2007). Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. The Journal of Neuroscience, 27, 4452-4459. https://doi.org/10.1523/JNEUROSCI.0134-07.2007
DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve visual object recognition? Neuron, 73, 415-434. https://doi.org/10.1016/j.neuron.2012.01.010
Dirnagl, U., Lindauer, U., & Villringer, A. (1993). Role of nitric oxide in the coupling of cerebral blood flow to neuronal activation in rats. Neuroscience Letters, 149, 43-46. https://doi.org/10.1016/0304-3940(93)90343-J
Drew, P. J. (2022). Neurovascular coupling: Motive unknown. Trends in Neurosciences, 45, 809-819. https://doi.org/10.1016/j.tins.2022.08.004
Ferrer, C., & De Marco García, N. V. (2022). The role of inhibitory interneurons in circuit assembly and refinement across sensory cortices. Front. Neural Circuits, 16, 866999. https://doi.org/10.3389/fncir.2022.866999
Gandrakota, R., Chakravarthy, V. S., & Pradhan, R. K. (2010). A model of indispensability of a large glial layer in cerebrovascular circulation. Neural Computation, 22, 949-968. https://doi.org/10.1162/neco.2009.01-09-945
Gardner, J. L. (2010). Is cortical vasculature functionally organized? NeuroImage, 49, 1953-1956. https://doi.org/10.1016/j.neuroimage.2009.07.004
Gordon, G. R. J., Choi, H. B., Rungta, R. L., Ellis-Davies, G. C. R., & MacVicar, B. A. (2008). Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature, 456, 745-750. https://doi.org/10.1038/nature07525
Grinvald, A., Lieke, E. E., Frostig, R. D., & Hildesheim, R. (1994). Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. The Journal of Neuroscience, 14, 2545-2568. https://doi.org/10.1523/JNEUROSCI.14-05-02545.1994
Gundavarapu, A., Srinivasa Chakravarthy, V., & Soman, K. (2019). A model of motion processing in the visual cortex using neural field with asymmetric Hebbian learning. Frontiers in Neuroscience, 13, 67. https://doi.org/10.3389/fnins.2019.00067
Hamel, E. (2006). Perivascular nerves and the regulation of cerebrovascular tone. Journal of Applied Physiology, 100, 1059-1064. https://doi.org/10.1152/japplphysiol.00954.2005
Hirsch, J. A., & Gilbert, C. D. (1991). Synaptic physiology of horizontal connections in the cat's visual cortex. The Journal of Neuroscience, 11, 1800-1809. https://doi.org/10.1523/JNEUROSCI.11-06-01800.1991
Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat's striate cortex. The Journal of Physiology, 148, 574-591. https://doi.org/10.1113/jphysiol.1959.sp006308
Hubel, D. H., & Wiesel, T. N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology, 28, 229-289. https://doi.org/10.1152/jn.1965.28.2.229
Hubel, D. H., & Wiesel, T. N. (1974). Sequence regularity and geometry of orientation columns in the monkey striate cortex. The Journal of Comparative Neurology, 158, 267-293. https://doi.org/10.1002/cne.901580304
Iadecola, C. (1998). Neurogenic control of the cerebral microcirculation: Is dopamine minding the store? Nature Neuroscience, 1, 263-265. https://doi.org/10.1038/1074
Iadecola, C. (2017). The neurovascular unit coming of age: A journey through neurovascular coupling in health and disease. Neuron, 96, 17-42. https://doi.org/10.1016/j.neuron.2017.07.030
Ibbotson, M., & Jung, Y. J. (2020). Origins of functional organization in the visual cortex. Frontiers in Systems Neuroscience, 14, 10. https://doi.org/10.3389/fnsys.2020.00010
Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., & Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences of the United States of America, 84, 9265-9269. https://doi.org/10.1073/pnas.84.24.9265
Jang, J., Song, M., & Paik, S.-B. (2020). Retino-cortical mapping ratio predicts columnar and salt-and-pepper organization in mammalian visual cortex. Cell Reports, 30, 3270-3279.e3. https://doi.org/10.1016/j.celrep.2020.02.038
Keller, A. J., & Martin, K. A. C. (2015). Local circuits for contrast normalization and adaptation investigated with two-photon imaging in cat primary visual cortex. The Journal of Neuroscience, 35, 10078-10087. https://doi.org/10.1523/JNEUROSCI.0906-15.2015
Kim, K. J., Ramiro Diaz, J., Iddings, J. A., & Filosa, J. A. (2016). Vasculo-neuronal coupling: Retrograde vascular communication to brain neurons. The Journal of Neuroscience, 36, 12624-12639. https://doi.org/10.1523/JNEUROSCI.1300-16.2016
Kleinfeld, D., Blinder, P., Drew, P. J., Driscoll, J. D., Muller, A., Tsai, P. S., & Shih, A. Y. (2011). A guide to delineate the logic of neurovascular signaling in the brain. Frontiers in Neuroenergetics, 3, 1-9. https://doi.org/10.3389/fnene.2011.00001
Koehler, R. C., Roman, R. J., & Harder, D. R. (2009). Astrocytes and the regulation of cerebral blood flow. Trends in Neurosciences, 32, 160-169. https://doi.org/10.1016/j.tins.2008.11.005
Kumar, B. S., Khot, A., Chakravarthy, V. S., & Pushpavanam, S. (2021). A network architecture for bidirectional neurovascular coupling in rat whisker barrel cortex. Frontiers in Computational Neuroscience, 15, 51.
Kumar, B. S., Mayakkannan, N., Manojna, N. S., & Chakravarthy, V. S. (2021). Artificial neurovascular network (ANVN) to study the accuracy vs. efficiency trade-off in an energy dependent neural network. Scientific Reports, 11, 1-19.
Kumar, B. S., Menon, S. C., Gayathri, S. R., & Chakravarthy, V. S. (2022). The Influence of Neural Activity and Neural Cytoarchitecture on Cerebrovascular Arborization: A Computational Model. Frontiers in Neuroscience, 16, 917196. https://doi.org/10.3389/fnins.2022.917196
Lacoste, B., Comin, C. H., Ben-Zvi, A., Kaeser, P. S., Xu, X., Costa, L. F., & Gu, C. (2014). Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex. Neuron, 83, 1117-1130. https://doi.org/10.1016/j.neuron.2014.07.034
Li, V. J., Chorghay, Z., & Ruthazer, E. S. (2023). A guide for the multiplexed: The development of visual feature maps in the brain. Neuroscience, 508, 62-75. https://doi.org/10.1016/j.neuroscience.2022.07.026
Li, Y., Fitzpatrick, D., & White, L. E. (2006). The development of direction selectivity in ferret visual cortex requires early visual experience. Nature Neuroscience, 9, 676-681. https://doi.org/10.1038/nn1684
Li, Y., Van Hooser, S. D., Mazurek, M., White, L. E., & Fitzpatrick, D. (2008). Experience with moving visual stimuli drives the early development of cortical direction selectivity. Nature, 456, 952-956. https://doi.org/10.1038/nature07417
Ma, J., Ayata, C., Huang, P. L., Fishman, M. C., & Moskowitz, M. A. (1996). Regional cerebral blood flow response to vibrissal stimulation in mice lacking type I NOS gene expression. American Journal of Physiology - Heart and Circulatory Physiology, 270, H1085-H1090. https://doi.org/10.1152/ajpheart.1996.270.3.H1085
Magistretti, P. J. (2011). Neuron-glia metabolic coupling and plasticity. Experimental Physiology, 96, 407-410. https://doi.org/10.1113/expphysiol.2010.053157
Mergenthaler, P., Dirnagl, U., & Meisel, A. (2004). Pathophysiology of stroke: Lessons from animal models. Metabolic Brain Disease, 19, 151-167. https://doi.org/10.1023/B:MEBR.0000043966.46964.e6
Mergenthaler, P., Lindauer, U., Dienel, G. A., & Meisel, A. (2013). Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends in Neurosciences, 36, 587-597. https://doi.org/10.1016/j.tins.2013.07.001
Miikkulainen, R., Bednar, J.A., Choe, Y., & Sirosh, J. (2005) Computational Maps in the Visual Cortex, Computational Maps in the Visual Cortex.
Miller, K. D., Keller, J. B., & Stryker, M. P. (1989). Ocular dominance column development: Analysis and simulation. Science, 245(80), 605-615. https://doi.org/10.1126/science.2762813
Miller, K. D., & MacKay, D. J. C. (1994). The role of constraints in Hebbian learning. Neural Computation, 6, 100-126. https://doi.org/10.1162/neco.1994.6.1.100
Mishra, A., Hamid, A., & Newman, E. A. (2011). Oxygen modulation of neurovascular coupling in the retina. Proceedings of the National Academy of Sciences of the United States of America, 108, 17827-17831. https://doi.org/10.1073/pnas.1110533108
Mishra, A., Reynolds, J. P., Chen, Y., Gourine, A. V., Rusakov, D. A., & Attwell, D. (2016). Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. Nature Neuroscience, 19, 1619-1627. https://doi.org/10.1038/nn.4428
Moore, C. I., & Cao, R. (2008). The hemo-neural hypothesis: On the role of blood flow in information processing. Journal of Neurophysiology, 99, 2035-2047. https://doi.org/10.1152/jn.01366.2006
Muddapu, V. R., Dharshini, S. A. P., Chakravarthy, V. S., & Gromiha, M. M. (2020). Neurodegenerative diseases - Is metabolic deficiency the root cause? Frontiers in Neuroscience, 14, 213. https://doi.org/10.3389/fnins.2020.00213
Mulholland, H. N., Hein, B., Kaschube, M., & Smith, G. B. (2021). Tightly coupled inhibitory and excitatory functional networks in the developing primary visual cortex. eLife, 10, e72456. https://doi.org/10.7554/eLife.72456
Najafian, S., Koch, E., Teh, K. L., Jin, J., Rahimi-Nasrabadi, H., Zaidi, Q., Kremkow, J., & Alonso, J. M. (2022). A theory of cortical map formation in the visual brain. National Communications, 13, 13. https://doi.org/10.1038/s41467-022-29433-y
Nishimura, N., Schaffer, C. B., Friedman, B., Lyden, P. D., & Kleinfeld, D. (2007). Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proceedings of the National Academy of Sciences of the United States of America, 104, 365-370. https://doi.org/10.1073/pnas.0609551104
O'Herron, P., Chhatbar, P. Y., Levy, M., Shen, Z., Schramm, A. E., Lu, Z., & Kara, P. (2016). Neural correlates of single-vessel haemodynamic responses in vivo. Nature, 534, 378-382. https://doi.org/10.1038/nature17965
O'Herron, P. J., Hartmann, D. A., Xie, K., Kara, P., & Shih, A. Y. (2022). 3D optogenetic control of arteriole diameter in vivo. eLife, 11, e72802. https://doi.org/10.7554/eLife.72802
Pellerin, L., & Magistretti, P. J. (2003). Food for thought: Challenging the dogmas. Journal of Cerebral Blood Flow and Metabolism, 23, 1282-1286. https://doi.org/10.1097/01.WCB.0000096064.12129.3D
Pellerin, L., & Magistretti, P. J. (2004). Neuroenergetics: Calling upon astrocytes to satisfy hungry neurons. Neuroscientist, 10, 53-62. https://doi.org/10.1177/1073858403260159
Pradhan, R. K., & Chakravarthy, V. S. (2011). Informational dynamics of vasomotion in microvascular networks: A review. Acta Physiologica, 201, 193-218. https://doi.org/10.1111/j.1748-1716.2010.02198.x
Pulsinelli, W. A., Brierley, J. B., & Plum, F. (1982). Temporal profile of neuronal damage in a model of transient forebrain ischemia. Annals of Neurology, 11, 491-498. https://doi.org/10.1002/ana.410110509
Raichle, M. E. (2000). A brief history of human functional brain mapping. Brain Mapping System, 33-75. https://doi.org/10.1016/B978-012692545-6/50004-0
Raichle, M. E. (2009). A brief history of human brain mapping. Trends in Neurosciences, 32, 118-126. https://doi.org/10.1016/j.tins.2008.11.001
Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of Neuroscience, 29, 449-476. https://doi.org/10.1146/annurev.neuro.29.051605.112819
Ranasinghe, S., Or, G., Wang, E. Y., Ievins, A., McLean, M. A., Niell, C. M., Chau, V., Wong, P. K. H., Glass, H. C., Sullivan, J., & McQuillen, P. S. (2015). Reduced cortical activity impairs development and plasticity after neonatal hypoxia ischemia. The Journal of Neuroscience, 35, 11946-11959. https://doi.org/10.1523/JNEUROSCI.2682-14.2015
Roman, R. J. (2002). P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiological Reviews, 82, 131-185. https://doi.org/10.1152/physrev.00021.2001
Roy, R. K., Althammer, F., Seymour, A. J., Du, W., Biancardi, V. C., Hamm, J. P., Filosa, J. A., Brown, C. H., & Stern, J. E. (2021). Inverse neurovascular coupling contributes to positive feedback excitation of vasopressin neurons during a systemic homeostatic challenge. Cell Reports, 37, 109925. https://doi.org/10.1016/j.celrep.2021.109925
Samet, H., & Tamminen, M. K. (1988). Efficient component labeling of images of arbitrary dimension represented by linear Bintrees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10, 579-586. https://doi.org/10.1109/34.3918
Schneider-Mizell, C. M., Bodor, A., Brittain, D., Buchanan, J., Bumbarger, D. J., Elabbady, L., Kapner, D., Kinn, S., Mahalingam, G., Seshamani, S., Suckow, S., Takeno, M., Torres, R., Yin, W., Dorkenwald, S., Bae, J. A., Castro, M. A., Fahey, P. G., Froudakis, E., … Costa, N. M. da. (2023). Cell-type-specific inhibitory circuitry from a connectomic census of mouse visual cortex. bioRxiv, 2023.01.23.525290.
Schummers, J., Yu, H., & Sur, M. (2008). Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science, 320(80), 1638-1643. https://doi.org/10.1126/science.1156120
Secomb, T. W., & Pries, A. R. (2002). Information transfer in microvascular networks. Microcirculation, 9, 377-387. https://doi.org/10.1080/713774084
Shapiro, L. G. (1996). Connected component labeling and adjacency graph construction. Machine Intellegence Pattern Recognition, 19, 1-30.
Shih, A. Y., Blinder, P., Tsai, P. S., Friedman, B., Stanley, G., Lyden, P. D., & Kleinfeld, D. (2013). The smallest stroke: Occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nature Neuroscience, 16, 55-63. https://doi.org/10.1038/nn.3278
Song, Y. H., Hwang, Y. S., Kim, K., Lee, H. R., Kim, J. H., Maclachlan, C., Dubois, A., Jung, M. W., Petersen, C. C. H., Knott, G., Lee, S. H., & Lee, S. H. (2020). Somatostatin enhances visual processing and perception by suppressing excitatory inputs to parvalbumin-positive interneurons in V1. Science Advances, 6, eaaz0517. https://doi.org/10.1126/sciadv.aaz0517
Stevens, J.-L. R., Law, J. S., Antolik, J., & Bednar, J. A. (2013). Mechanisms for stable, robust, and adaptive development of orientation maps in the primary visual cortex. The Journal of Neuroscience, 33, 15747-15766. https://doi.org/10.1523/JNEUROSCI.1037-13.2013
Takano, T., Tian, G. F., Peng, W., Lou, N., Libionka, W., Han, X., & Nedergaard, M. (2006). Astrocyte-mediated control of cerebral blood flow. Nature Neuroscience, 9, 260-267. https://doi.org/10.1038/nn1623
von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in the striate cortex. Kybernetik, 14, 85-100. https://doi.org/10.1007/BF00288907
Wagatsuma, N., Nobukawa, S., & Fukai, T. (2022) A microcircuit model involving parvalbumin, somatostatin, and vasoactive intestinal polypeptide inhibitory interneurons for the modulation of neuronal oscillation during visual processing. Cereb. Cortex. https://doi.org/10.1093/cercor/bhac355
Wang, X., Lou, N., Xu, Q., Tian, G. F., Peng, W. G., Han, X., Kang, J., Takano, T., & Nedergaard, M. (2006). Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nature Neuroscience, 9, 816-823. https://doi.org/10.1038/nn1703
Wilson, S. P., & Bednar, J. A. (2015). What, if anything, are topological maps for? Developmental Neurobiology, 75, 667-681. https://doi.org/10.1002/dneu.22281
Woolsey, T. A., Rovainen, C. M., Cox, S. B., Henegar, M. H., Liang, G. E., Liu, D., Moskalenko, Y. E., Sui, J., & Wei, L. (1996). Neuronal units linked to microvascular modules in cerebral cortex: Response elements for imaging the brain. Cerebral Cortex, 6, 647-660. https://doi.org/10.1093/cercor/6.5.647
Wu, Y. T., Bennett, H. C., Chon, U., Vanselow, D. J., Zhang, Q., Muñoz-Castañeda, R., Cheng, K. C., Osten, P., Drew, P. J., & Kim, Y. (2022). Quantitative relationship between cerebrovascular network and neuronal cell types in mice. Cell Reports, 39, 110978. https://doi.org/10.1016/j.celrep.2022.110978

Auteurs

Bhadra S Kumar (BS)

Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, India.

Philip J O'Herron (PJ)

Department of Physiology, Augusta University, Augusta, GA, USA.

Prakash Kara (P)

Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.

V Srinivasa Chakravarthy (VS)

Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, India.
Center for Complex Systems and Dynamics, Indian Institute of Technology Madras (IITM), Chennai, India.

Articles similaires

1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
alpha-Synuclein Humans Animals Mice Lewy Body Disease

Unsupervised learning for real-time and continuous gait phase detection.

Dollaporn Anopas, Yodchanan Wongsawat, Jetsada Arnin
1.00
Humans Gait Neural Networks, Computer Unsupervised Machine Learning Walking
Animals Optogenetics Visual Cortex Neurons Mice

Classifications MeSH