Mass spectrometry of polymers: A tutorial review.

complex mixtures and blends mass spectrometry multidimensional MS techniques polymers surfaces

Journal

Mass spectrometry reviews
ISSN: 1098-2787
Titre abrégé: Mass Spectrom Rev
Pays: United States
ID NLM: 8219702

Informations de publication

Date de publication:
18 Apr 2023
Historique:
revised: 03 03 2023
received: 02 10 2022
accepted: 17 03 2023
pubmed: 19 4 2023
medline: 19 4 2023
entrez: 18 4 2023
Statut: aheadofprint

Résumé

Ever since the inception of synthetic polymeric materials in the late 19th century, the number of studies on polymers as well as the complexity of their structures have only increased. The development and commercialization of new polymers with properties fine-tuned for specific technological, environmental, consumer, or biomedical applications requires powerful analytical techniques that permit the in-depth characterization of these materials. One such method with the ability to provide chemical composition and structure information with high sensitivity, selectivity, specificity, and speed is mass spectrometry (MS). This tutorial review presents and exemplifies the various MS techniques available for the elucidation of specific structural features in a synthetic polymer, including compositional complexity, primary structure, architecture, topology, and surface properties. Key to every MS analysis is sample conversion to gas-phase ions. This review describes the fundamentals of the most suitable ionization methods for synthetic materials and provides relevant sample preparation protocols. Most importantly, structural characterizations via one-step as well as hyphenated or multidimensional approaches are introduced and demonstrated with specific applications, including surface sensitive and imaging techniques. The aim of this tutorial review is to illustrate the capabilities of MS for the characterization of large, complex polymers and emphasize its potential as a powerful compositional and structural elucidation tool in polymer chemistry.

Identifiants

pubmed: 37070280
doi: 10.1002/mas.21844
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd.

Références

Aaserud, D.J., Prokai, L., Simonsick, W.J., Jr. 1999. Gel permeation chromatography coupled to Fourier transform mass spectrometry for polymer characterization. Anal. Chem. 71(21):4793-4799. https://doi.org/10.1021/ac990722c
Abadie, M.J.M., Pinteala, M., Rotaru, A. (Eds.). 2021. New Trends in Macromolecular and Supramolecular Chemistry for Biological Applications, Springer Nature, Cham, Switzerland. https://doi.org/10.1007/978-3-030-57456-7
Abe, Y., Ackerman, L.K., Mutsuga, M., Sato, K., Begley, T.H. 2020. Rapid identification of polyamides using direct analysis in real-time mass spectrometry. Rapid Commun. Mass Spectrom. 34(S2): e8707. https://doi.org/10.1002/rcm.8707
Adamus, G., Rizzarelli, P., Montaudo, M.S., Kowalczuk, M., Montaudo, G. 2005. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with size-exclusion chromatographic fractionation for structural characterization of synthetic aliphatic copolyesters. Rapid Commun. Mass Spectrom. 20(5):804-814. https://doi.org/10.1002/rcm.2365
Alalwiat, A., Grieshaber, S.E., Paik, B.A., Kiick, K.L., Jia, X., Wesdemiotis, C. 2015. Top-down mass spectrometry of hybrid materials with hydrophobic peptide and hydrophilic or hydrophobic polymer blocks. Analyst 140(22):7550-7564. https://doi.org/10.1039/c5an01600b
Alawani, N., Barrère-Mangote, C., Wesdemiotis, C. 2022. Analysis of thermoplastic copolymers by mild thermal degradation coupled to ion mobility mass spectrometry. Macomol. Rapid Commun. 44:e2200306. https://doi.org/10.1002/marc.202200306
Alexander, N.E., Swanson, J.P., Joy, A., Wesdemiotis, C. 2018. Sequence analysis of cyclic polyester copolymers using ion mobility tandem mass spectrometry. Int. J. Mass Spectrom. 429:151-157. https://doi.org/10.1016/j.ijms.2017.07.019
Aliyari, E., Konermann, L. 2020. Formation of gaseous proteins via the ion evaporation model (IEM) in electrospray mass spectrometry. Anal. Chem. 92(15):10807-10814. https://doi.org/10.1021/acs.analchem.0c02290
Aloui, I., Legros, V., Giuliani, A., Buchmann, W. 2020. Synchrotron UV photoactivation of trapped sodiated ions produced from poly(ethylene glycol) by electrospray ionization. Rapid Commun. Mass Spectrom. 34(S2):e8773. https://doi.org/10.1002/RCM.8773
Aloui, I., Legros, V., Giuliani, A., Buchmann, W. 2021. Ultraviolet photoactivation using synchrotron radiation for tandem mass spectrometry of polysiloxanes. J. Am. Soc. Mass Spectrom. 32(4):901-912. https://doi.org/10.1021/JASMS.0C00392
AlShehri, M.M., ALOthman, Z.A., Bedjah, A.Y., Ahmed, H., Aouak, T. New method based on direct analysis in real-time coupled with time-of-flight mass spectrometry (DART-ToF-MS) for investigation of the miscibility of polymer blends. 2022. Polymers 14(9):1644. https://doi.org/10.3390/polym14091644
Altuntaş, E., Knop, K., Tauhardt, L., Kempe, K., Crecelius, A.C., Jäger, M., Hager, M.D., Schubert, U.S. 2012. Tandem mass spectrometry of poly(ethylene imine)s by electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). J. Mass Spectrom. 47(1):105-114. https://doi.org/10.1002/jms.2032
Altuntaş, E., Schubert, U.S. 2014. “Polymeromics”: Mass spectrometry-based strategies in polymer science toward complete sequencing approaches: A review. Anal. Chim. Acta 808:56-69. https://doi.org/10.1016/J.ACA.2013.10.027
Amalian, J.-A., Mondal, T., Konishcheva, E., Cavallo, G., Petit, B.E., Lutz, J.-F., Charles, L. 2021. Desorption electrospray ionization (DESI) of digital polymers: Direct tandem mass spectrometry decoding and imaging from materials surfaces.” Adv. Mater. Technol. 6(4):2001088. https://doi.org/10.1002/ADMT.202001088
Analytical Methods Committee, AMCTB No. 85. 2018. Analytical pyrolysis in cultural heritage. Anal. Meth. 10:5463-5467. https://doi.org/10.1039/C8AY90151A
Andrade, F.J., Shelley, J.T., Wetzel, W.C., Webb, M.R., Gamez, G., Ray, S.J., Hieftje, G.M. 2008. Atmospheric pressure chemical ionization source. 1. Ionization of compounds in the gas phase. Anal. Chem. 80(8):2646-2653. https://doi.org/10.1021/ac800156y
Antignac, J.P., de Wasch, K., Monteau, F., De Brabander, H., Andre, F., Le Bizec, B. 2005. The ion suppression phenomenon in liquid chromatography-mass spectrometry and its consequences in the field of residue analysis. Anal. Chim. Acta 529(1-2):129-136. https://doi.org/10.1016/j.aca.2004.08.055
Antoine, R., Lemoine, J., Dugourd, P. 2014. Electron photodetachment dissociation for structural characterization of synthetic and bio-polymer anions. Mass Spectrom. Rev. 33(6):501-522. https://doi.org/10.1002/mas.21402
Atakay, M., Aksakal, F., Bozkaya, U., Salih, B., Wesdemiotis, C. 2020. Conformational characterization of polyelectrolyte oligomers and their noncovalent complexes using ion mobility-mass spectrometry J. Am. Soc. Mass Spectrom. 31(2):441-449. https://doi.org/10.1021/JASMS.9B00135
Banerjee, S., Mazumdar, S. 2012. Electrospray ionization mass spectrometry: A technique to access the information beyond the molecular weight of the analyte. Int. J. Anal. Chem. 2012:282574. https://doi.org/10.1155/2012/282574
Barrère, C., Hubert-Roux, M., Afonso, C., Racaud, A. 2014. Rapid analysis of lubricants by atmospheric solid analysis probe-ion mobility mass spectrometry. J. Mass Spectrom. 49(8):709-715. https://doi.org/10.1002/jms.3404
Barrère, C., Maire, F., Afonso, C., Giusti, P. 2012. Atmospheric solid analysis probe-Ion mobility mass spectrometry of polypropylene. Anal. Chem. 84(21):9349-9354. https://doi.org/10.1021/ac302109q
Barrère, C, Selmi, W., Hubert-Roux, M., Coupin, T., Assumani, B., Afonso, C., Giusti, P. 2014. Rapid analysis of polyester and polyethylene blends by ion mobility-mass spectrometry. Polym. Chem. 5:3576-3582. https://doi.org/10.1039/C4PY00164H
Baumgaertel, A., Scheubert, K., Pietsch, B., Kempe, C., Crecelius, A.C., Böcker, S, Schubert, U.S. 2011. Analysis of different synthetic homopolymers by the use of a new calculation software for tandem mass spectra. Rapid Commun. Mass Spectrom. 25(12):1765-1778. https://doi.org/10.1002/rcm.5019
Beale, A.M, van Der Eerden, A.M.J., Jacques, S.D.M., Leynaud, O., O'Brien, M.G., Meneau, F., Nikitenko, S., Bras, W., Weckhuysen, B.M. 2006. A combined SAXS/WAXS/XAFS setup capable of observing concurrent changes across the nano-to-micrometer size range in inorganic solid crystallization processes. J. Am. Chem. Soc. 128(38):12386-12387. https://doi.org/10.1021/ja062580r
Benninghoven, A. 1994. Surface analysis by secondary ion mass spectrometry (SIMS). Surf. Sci. 299:246-260. https://doi.org/10.1016/0039-6028(94)90658-0
Bernasik, A., Rysz, J., Budkowski, A., Kowalski, K., Camra, J., Jedliński, J. 2001. Three-dimensional information on the phase domain structure of thin films of polymer blends revealed by secondary ion mass spectrometry. Macromol. Rapid Commun. 22(11):829-834. https://doi.org/10.1002/1521-3927(20010701)22:11%3C829::AID-MARC829%3E3.0.CO;2-8
Biri, B., Nagy, L., Kuki, Á., Tőke, E.R., Deák, G., Zsuga, M., Kéki, S. 2012. Collision-induced dissociation study of poly(2-ethyl-2-oxazoline) using survival yields and breakdown curves. J. Mass Specttrom. 48(1):16-23. https://doi.org/10.1002/jms.3105
Block, C, Wynants, L., Kelchtermans, M., De Boer, R., Compernolle, F. 2006. Identification of polymer additives by liquid chromatography-mass spectrometry. Polym. Degrad. Stab. 91(12):3163-3173. https://doi.org/10.1016/j.polymdegradstab.2006.07.015
Bodzon-Kulakowska, A., Cichon, T., Golec, A., Drabik, A., Ner, J., Suder, P. 2015. DESI-MS as a tool for direct lipid analysis in cultured cells. Cytotechnology 67(6):1085-1091. https://doi.org/10.1007/S10616-014-9734-Z
Boyle, B.M., Heinz, O., Miyake, G.M., Ding, Y. 2019. Impact of the pendant group on the chain conformation and bulk properties of norbornene imide-based polymers. Macromolecules 52(9):3426-3434. https://doi.org/10.1021/acs.macromol.9b00020
Bridoux, M.C., Machuron-Mandard, X. 2013. Capabilities and limitations of direct analysis in real-time orbitrap mass spectrometry and tandem mass spectrometry for the analysis of synthetic and natural polymers. J. Mass Spectrom. 27(18):2057-2070. https://doi.org/10.1002/rcm.6664
Brodbelt, J.S. 2014. Photodissociation mass spectrometry: New tools for characterization of biological molecules. Chem. Soc. Rev. 43:2757-2783. https://doi.org/10.1039/c3cs60444f
Brodbelt, J.S., Morrison, L.J., Santos, I. 2020. Ultraviolet photodissociation mass spectrometry for analysis of biological molecules. Chem. Rev. 120(7):3328-3380. https://doi.org/10.1021/acs.chemrev.9b00440
Buback, M., Frauendorf, H., Günzler, F., Vana, P. 2007. Electrospray ionization mass spectrometric end-group analysis of PMMA produced by radical polymerization using diacyl peroxide initiators. Polymer 48(19):5590-5598. https://doi.org/10.1016/j.polymer.2007.07.041
Cavallo, G., Poyer, S., Amalian, J.-A., Dufour, F., Burel, A., Carapito, C., Charles, L., Lutz, J.-F. 2018. Cleavable binary dyads: Simplifying data extraction and increasing storage density in digital polymers. Angew. Chem. Int. Ed. 57(21):6266-6269. https://doi.org/10.1002/anie.201803027
Cerda, B.A., Breuker, K., Horn, D.M., McLafferty, F.W. 2001. Charge/radical site initiation versus coulombic repulsion for cleavage of multiply charged ions. Charge solvation in poly(alkene glycol) ions. J. Am. Soc. Mass Spectrom. 12(5):565-570. https://doi.org/10.1016/S1044-0305(01)00209-4
Cerda, B.A., Horn, D.M., Breuker, K., McLafferty, F.W. 2002. Sequencing of specific copolymer oligomers by electron-capture-dissociation mass spectrometry. J. Am. Chem. Soc. 124(31):9287-9291. https://doi.org/10.1021/ja0123756
Chaicharoen, K., Polce, M.J., Singh, A., Pugh, C., Wesdemiotis, C. 2008. Characterization of linear and branched polyacrylates by tandem mass spectrometry. Anal. Bionanl. Chem. 392(4):595-607. https://doi.org/10.1007/S00216-008-1969-0
Chan, Y.-T., Li, X., Carri, G.A., Moorefield, C.N., Newkome, G.R., Wesdemiotis, C. 2011. Design, synthesis, and traveling wave ion mobility mass spectrometry characterization if iron(II)- and ruthenium(II)-terpyridine metallomacrocycles. J. Am. Chem. Soc. 133(31):11967-11976. https://doi.org/10.1021/ja107307u
Chang, T. 2018. Chromatographic separation of polymers. In: Wang, Y., Gao, W., Orski, S., Liu, X.M. (Eds.). Recent Progress in Separation of Macromolecules and Particulates. ACS Symposium Series, American Chemical Society, Washington, DC, chapter 1, pp. 1-17. https://doi.org/10.1021/bk-2018-1281.ch001
Chang, W.C., Huang, L.C.L., Wang, Y.-S., Peng, W.-P., Chang, H.C., Hsu, N.Y., Yang, W.B., Chen, C.H. 2007. Matrix-assisted laser desorption/ionization (MALDI) mechanism revisited. Anal. Chim. Acta 582(1):1-9. https://doi.org/10.1016/j.aca.2006.08.062
Chao, H.C., Lee, K.W., Shih, M., McLuckey, S.A. 2022. Characterization of homopolymer distributions via direct infusion ESI-MS/MS using wide mass-to-charge windows and gas-phase ion/ion reactions. J. Am. Soc. Mass Spectrom. 33(4):704-713. https://doi.org/10.1021/jasms.2c00001
Charles, L. 2014. MALDI of synthetic polymers with labile end-groups. Mass Spectrom. Rev. 33(6):523-543. https://doi.org/10.1002/mas.21403
Charles, L., Chendo, C., Poyer, S. 2020. Ion mobility spectrometry-Mass spectrometry coupling for synthetic polymers. Rapid Commun. Mass Spectrom. 34(S2):e8624. https://doi.org/10.1002/rcm.8624
Chen, H., He, M., Pei, J., He, H. 2003. Quantitative analysis of synthetic polymers using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 75(23):6531-6535. https://doi.org/10.1021/ac0344034
Chen, J., Garcia, E.S., Zimmerman, S.C. 2020. Intramolecularly cross-linked polymers: From structure to function with applications as artificial antibodies and artificial enzymes. Acc. Chem. Res. 53(6):1244-1256. https://doi.org/10.1021/acs.accounts.0c00178
Chen, Y., Zuo, Z., Dai, X., Xiao, P., Fang, X., Wang, X., Wang, W., Ding, C.-F. 2018. Gas-phase complexation of α-/β-cyclodextrin with amino acids studied by ion mobility-mass spectrometry and molecular dynamics simulations. Talanta 186:1-7. https://doi.org/10.1016/j.talanta.2018.04.003
Cody, R.B., Laramée, J.A., Durst, H.D. 2005. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77(8):2297-2302. https://doi.org/10.1021/ac050162j
Cohen, L.H., Gusev, A.I. 2002. Small molecule analysis by MALDI mass spectrometry. Anal. Bional. Chem. 373(7):571-586. https://doi.org/10.1007/s00216-002-1321-z
Constantopoulos, T.L., Jackson, G.S., Enke, C.G. 1999. Effects of salt concentration on analyte response using electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 10(7):625-634. https://doi.org/10.1016/S1044-0305(99)00031-8
Cornett, D.S., Reyzer, M.L., Chaurand, P., Caprioli, R.M. 2007. MALDI imaging mass spectrometry: Molecular snapshots of biochemical systems. Nat. Methods 4:828-833. https://doi.org/10.1038/nmeth1094
Crecelius, A.C., Alexandrov, T., Schubert, U.S. 2011. Application of matrix-assisted laser desorption/ionization mass spectrometric imaging to monitor surface changes of UV-irradiated poly(styrene) films. Rapid Commun. Mass Spectrom. 25(19): 2809-2814. https://doi.org/10.1002/rcm.5164
Crecelius, A.C., Baumgaertel, A., Schubert, U.S. 2009. Tandem mass spectrometry of synthetic polymers. J. Mass Spectrom. 44(9):1277-1286. https://doi.org/10.1002/jms.1623
Crecelius, A.C., Becer, R., Knop, K., Schubert, U.S. 2010. Block length determination of the block copolymer mPEG-b-PS using MALDI-TOF MS/MS. J. Polym. Sci. A: Polym. Chem. 48(20): 4375-4384. https://doi.org/10.1002/pola.24223
Crecelius, A.C., Vitz, J., Schubert, U.S. 2014. Mass spectrometric imaging of synthetic polymers. Anal. Chim. Acta 808:10-17. https://doi.org/10.1016/J.ACA.2013.07.033
Crotty, S., Gerişlioğlu, S., Endres, K.J., Wesdemiotis, C., Schubert, U.S. 2016. Polymer architectures via mass spectrometry and hyphenated techniques: A review. Anal. Chim. Acta 932:1-21. https://doi.org/10.1016/j.aca.2016.05.024
D'Atri, V., Porrini, M., Rosu, F., Gabelica, V. 2015. Linking molecular models with ion mobility experiments. Illustration with a rigid nucleic acid structure. J. Mass Spectrom. 50(5):711-726. https://doi.org/10.1002/JMS.3590
De Hoffmann, E., Stroobant, V. 2007. Mass Spectrometry Principles and Applications, 3rd ed., John Wiley & Sons Ltd., Chichester, UK, pp. 189-216. https://www.wiley.com/en-us/Mass+Spectrometry%3A+Principles+and+Applications%2C+3rd+Edition-p-9781118681947
Diepens, M., Gijsman, P. 2007. Photodegradation of bisphenol A polycarbonate. Polym. Degrad. Stabil. 92(3):397-406. https://doi.org/10.1016/j.polymdegradstab.2006.12.003
Dodds, J.N., Baker, E.S. 2019. Ion mobility spectrometry: Fundamental concepts, instrumentation, applications, and the road ahead. J. Am. Soc. Mass Specttrom. 30(11):2185-2195. https://doi.org/10.1007/s13361-019-02288-2
Dreisewerd, K. 2003. The desorption process in MALDI. Chem. Rev. 103(2):395-426. https://doi.org/10.1021/cr010375i
Eberlin, L.S., Ferreira, C.R., Dill, A.L., Ifa, D.R., Cooks, R.G. 2011. Desorption electrospray ionization mass spectrometry for lipid characterization and biological tissue imaging. Biochim. Biophys. Acta 1811(11):946-960. https://doi.org/10.1016/j.bbalip.2011.05.006
Edwards, H.M., Sasiene, Z.J., Mendis, P.M., Jackson, G.P. 2022. Structural characterization of natural and synthetic macrocycles using charge-transfer dissociation mass spectrometry. J. Am. Soc. Mass Spectrom. 33(4):671-680. https://doi.org/10.1021/JASMS.1C00369
El-Aneed, A., Cohen, A., Banoub. J. 2009. Mass spectrometry, review of the basics: Electrospray, MALDI, and commonly used mass analyzers. Appl. Spectrosc. Rev. 44(3):210-230. https://doi.org/10.1080/05704920902717872
Endres, K.J., Barthelmes, K., Winter, A., Antolovich, R., Schubert, U.S., Wesdemiotis, C. 2020. Collision cross-section analysis of self-assembled metallomacrocycle isomers and isobars via ion mobility mass spectrometry. Rapid Commun. Mass Spectrom. 34(S2):e8717. https://doi.org/10.1002/RCM.8717
Endres, K.J., Dilla, R.A., Becker, M.L., Wesdemiotis, C. 2021. Poly(ethylene glycol) hydrogel crosslinking chemistries identified via atmospheric solids analysis probe mass spectrometry. Macromolecules 54(17):7754-7764. https://doi.org/10.1021/acs.macromol.1c00765
Endres, K.J., Hill, J.A., Lu, K., Foster, M.D., Wesdemiotis, C. 2018. Surface layer matrix-assisted laser desorption ionization mass spectrometry imaging: A surface imaging technique for molecular-level analysis of synthetic material surfaces. Anal. Chem. 90(22):13427-13433. https://doi.org/10.1021/acs.analchem.8b03238
Endres, K.J. 2019. Mass spectrometry methods for macromolecules: Polymer architectures, cross-linking, and surface imaging. Ph.D. Dissertation, The University of Akron. http://rave.ohiolink.edu/etdc/view?acc_num=akron1553096604194835
Farenc, M., Corilo, Y.E., Lalli, P.M., Riches, E., Rodgers, R.P., Afonso, C., Giusti, P. 2016. Comparison of atmospheric pressure ionization for the analysis of heavy petroleum fractions with ion mobility-mass spectrometry. Energy Fuels 30(11):8896-8903. https://doi.org/10.1021/acs.energyfuels.6b01191
Feldermann, A., Toy, A.A., Davis, T.P., Stenzel, M.H., Barner-Kowollik, C. 2005. An in-depth analytical approach to the mechanism of the RAFT process in acrylate free radical polymerizations via coupled size exclusion chromatography-electrospray ionization mass spectrometry (SEC-ESI-MS). Polymer 46(19):8448-8457. https://doi.org/10.1016/J.POLYMER.2005.01.101
Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M. 1989. Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64-71. https://doi.org/10.1126/science.2675315
Foley, C.D., Zhang, B., Alb, A.M., Trimpin, S., Grayson, S.M. 2015. Use of ion mobility spectrometry-mass spectrometry to elucidate architectural dispersity within star polymers. ACS Macro Lett. 4(7):778-782. https://doi.org/10.1021/acsmacrolett.5b00299
Forbes, T.P., Sisco, E. 2018. Recent advances in ambient mass spectrometry of trace explosives. Analyst 143:1948-1969. https://doi.org/10.1039/C7AN02066J
Fortman, D.J., Brutman, J.P., De Hoe, G.X., Snyder, R.L., Dichtel, W.R., Hillmyer, M.A. 2018. Approaches to sustainable and continually recyclable cross-linked polymers. ACS Sustain. Chem. Eng. 6(9): 11145-11159. https://doi.org/10.1021/acssuschemeng.8b02355
Fouquet, T., Mertz, G., Desbenoit, N., Frache, G., Ruch, D. 2014. TOF-SIMS/MALDI-TOF combination for the molecular weight depth profiling of polymeric bilayer. Mater. Lett. 128:23-26. https://doi.org/10.1016/J.MATLET.2014.04.119
Fouquet, T., Barrère-Mangote, C., Farenc, M., Afonso, C., Giusti, P. 2015. Atmospheric solid analysis probe mass spectrometry vs electrospray tandem mass spectrometry of polydimethylsiloxanes in positive and negative ionization modes. Rapid Commun. Mass Spectrom. 29(10):982-986. https://doi.org/10.1002/rcm.7182
Fouquet, T., Sato, H. 2017. Extension of the Kendrick mass defect analysis of homopolymers to low resolution and high mass range mass spectra using fractional base units. Anal. Chem. 89(5):2682-2686. https://doi.org/10.1021/acs.analchem.6b05136
Fouquet, T.N.J. 2019. The Kendrick analysis for polymer mass spectrometry. J. Mass Spectrom. 54(12):933-947. https://doi.org/10.1002/jms.4480
Fouquet, T.N.J., Amalian, J.-A., Aniel, N., Carvin-Sergent, I., Issa, S., Poyer, S., Crozet, D., Giusti, P., Gigmes, D., Trimaille, T., Charles, L. 2021. Reactive desorption electrospray ionization mass spectrometry to determine intrinsic degradability of poly(lactic-co-glycolic acid) chains. Anal. Chem. 93(35):12041-12048. https://doi.org/10.1021/ACS.ANALCHEM.1C02280
Fouquet, T.N.J., Pizzala, H., Rollet, M., Crozet, D., Giusti, P., Charles, L. 2020. Mass spectrometry-based analytical strategy for comprehensive molecular characterization of biodegradable poly(lactic-co-glycolic acid) copolymers. J. Am. Soc. Mass Spectrom. 31(7):1554-1562. https://doi.org/10.1021/jasms.0c00137
Friia, M., Legros, V., Tortajada, J., Buchmann, W. 2012. Desorption electrospray ionization-Orbitrap mass spectrometry of synthetic polymers and copolymers. J. Mass Spectrom. 47(8):1023-1033. https://doi.org/10.1002/JMS.3057
Fussell, R.J., Chan, D., Sharman, M. 2010. An assessment of atmospheric-pressure solids-analysis probes for the detection of chemicals in food. Trends Anal. Chem. 29(11):1326-1335. https://doi.org/10.1016/j.trac.2010.08.004
Gabelica, V., Livet, S., Rosu, F. 2018. Optimizing native ion mobility Q-TOF in helium and nitrogen for very fragile noncovalent structures. J. Am. Soc. Mass Spectrom. 29(11):2189-2198. https://doi.org/10.1007/s13361-018-2029-4
Gabelica, V., Marklund, E. 2018. Fundamentals of ion mobility spectrometry. Curr. Opin. Chem. Biol. 42:51-59. https://doi.org/10.1016/j.cbpa.2017.10.022
Gerișlioǧlu, S., Wesdemiotis, C. 2017. Chain-end and backbone analysis of poly(N-isopropylacrylamide)s using sequential electron transfer dissociation and collisionally activated dissociation. Int. J. Mass Spectrom. 413:61-68. https://doi.org/10.1016/j.ijms.2016.08.001
Gidden, J., Wyttenbach, T., Jackson, A.T., Scrivens, J.H., Bowers, M.T. 2000. Gas-phase conformations of synthetic polymers: Poly(ethylene glycol), poly(propylene glycol), and poly(tetramethylene glycol). J. Am. Chem. Soc. 122(19):4692-4699. https://doi.org/10.1021/ja993096+
Gies, A.P. 2012. Ionization techniques for polymer mass spectrometry. In: Barner-Kowollik, C., Gruendling, T., Falkenhagen, J., Weidner, S. (Eds.). Mass Spectrometry in Polymer Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, chapter 2, pp. 33-56. https://doi.org/10.1002/9783527641826.ch2
Gies A.P., Heath, W.H., Keaton, R.J., Jimenez, J.J., Zupancic, J.J. 2013. MALDI-TOF/TOF CID study of polycarbodiimide branching reactions. Macromolecules 46(19):7616-7637. https://doi.org/10.1021/ma401481g
Gies, A.P., Hercules, D.M. 2014. Collision-induced dissociation study of ester-based polyurethane fragmentation reactions. Anal. Chim. Acta 808:199-219. https://doi.org/10.1016/j.aca.2013.09.035
Gies, A.P., Nonidez, W.K. 2004. A technique for obtaining matrix-assisted laser desorption/ionization time-of-flight mass spectra of poorly soluble and insoluble aromatic polyamides. Anal. Chem. 76(7):1991-1997. https://doi.org/10.1021/Ac035299T
Gies, A.P., Vergne, M.J., Orndorff, R.L., Hercules, D.M. 2007. MALDI-TOF/TOF CID study of polystyrene fragmentation reactions. Macromolecules 40(21):7493-7504. https://doi.org/10.1021/ma0712450
Girod, M., Antoine, R., Lemoine, J., Dugurd, P. 2011. End-group characterization of poly(styrene sulfonate sodium salt) by activated electron photo-detachment dissociation. Rapid Commun. Mass Spectrom. 25(21):3259-3266. https://doi.org/10.1002/rcm.5228
Girod, M., Brunet, C., Antoine, R., Lemoine, J., Dugourd, P., Charles, L. 2012. Efficient structural characterization of poly(methacrylic acid) by activated-electron photodetachment dissociation. J. Am. Soc. Mass Spectrom. 23(1):7-11. https://doi.org/10.1007/s13361-011-0279-5
Girod, M., Phan, T.N.T., Charles, L. 2008. Microstructural study of a nitroxide-mediated poly(ethylene oxide)/polystyrene block copolymer (PEO-b-PS) by electrospray tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 19(8):1163-1175. https://doi.org/10.1016/j.jasms.2008.04.030
González-Manzano, S., Santos-Buelga, C., Pérez-Alonso, J.J., Rivas-Gonzalo, J.C., Escribano-Bailón, M.T. 2006. Characterization of the mean degree of polymerization of proanthocyanidins in red wines using liquid chromatography-mass spectrometry (LC-MS). J. Agric. Food Chem. 54(12):4326-4332. https://doi.org/10.1021/JF060467E
Gruendling, T., Guilhaus, M., Barner-Kowollik, C. 2008. Quantitative LC-MS of polymers: Determining accurate molecular weight distributions by combined size exclusion chromatography and electrospray mass spectrometry with maximum entropy data processing. Anal. Chem. 80(18):6915-6927. https://doi.org/10.1021/AC800591J
Haines, P.J. 2002. Principles of Thermal Analysis and Calorimetry, Royal Society of Chemistry, Cambridge, UK. https://doi.org/10.1039/9781847551764
Hajslova, J., Cajka, T., Vaclavik, L. 2011. Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis. Trends Analyt. Chem. 30(2):204-218. https://doi.org/10.1016/j.trac.2010.11.001
Hale, O.J., Cooper, H.J. 2020. In situ mass spectrometry analysis of intact proteins and protein complexes from biological substrates. Biochem. Soc. Trans. 48(1):317-326. https://doi.org/10.1042/bst20190793
Hankin, J.A., Barkley, R.M., Murphy, R.C. 2007. Sublimation as a method of matrix application for mass spectrometric imaging. J. Am. Soc. Mass Spectrom. 18(9):1646-1652. https://doi.org/10.1016/J.JASMS.2007.06.010
Hanton, S.D., Parees, D.M. 2005. Extending the solvent-free MALDI sample preparation method. J. Am. Soc. Mass Spectrom. 16(1):90-93. https://doi.org/10.1016/j.jasms.2004.09.019
Hanton, S.D., Parees, D.M., Owens, K.G. 2004. MALDI PSD of low molecular weight ethoxylated polymers. Int. J. Mass Spectrom. 238(3):257-264. https://doi.org/10.1016/j.ijms.2004.09.028
Hanton, S.D., Owens, K.G. 2012. Polymer MALDI sample preparation. In: Barner-Kowollik, C., Gruendling, T., Falkenhagen, J., Weidner, S. (Eds.). Mass Spectrometry in Polymer Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, chapter 5, pp. 119-147. https://doi.org/10.1002/9783527641826.ch5
Haque, F.M, Grayson, S.M. 2020. The synthesis, properties and potential applications of cyclic polymers. Nat. Chem. 12(5):433-444. https://doi.org/10.1038/s41557-020-0440-5
Harrison, A.G., Young, A.B., Bleiholder, C., Sahai, S., Paizs, B. 2006. Scrambling of sequence information in collision-induced dissociation of peptides. J. Am. Chem. Soc. 128(32):10364-10365. https://doi.org/10.1021/ja062440h
Hassellöv, M., Hulthe, G., Lyvén, B., Stenhagen, G. 2006. Electrospray mass spectrometry as online detector for low molecular weight polymer separations with flow field-flow fractionation. J. Liq. Chromatogr. Relat. Technol. 20 16-17):2843-2856. https://doi.org/10.1080/10826079708005596
Hill, J.A., Endres, K.J., Mahmoudi, P., Matsen, M.W., Wesdemiotis, C., Foster, M.D. 2018. Detection of surface enrichment driven by molecular weight disparity in virtually monodisperse polymers. ACS Macro Lett. 7(4):487-492. https://doi.org/10.1021/acsmacrolett.7b00993
Hill, J.A., Endres, K.J., Meyerhofer, J., He, Q., Wesdemiotis, C., Foster, M.D. 2018. Subtle end group functionalization of polymer chains drives surface depletion of entire polymer chains. ACS Macro Lett. 7(7):795-800. https://doi.org/10.1021/acsmacrolett.8b00394
Hilton, G.R., Jackson, A.T., Thalassinos, K., Scrivens, J.H. 2008. Structural analysis of synthetic polymer mixtures using ion mobility and tandem mass spectrometry. Anal. Chem. 80(24):9720-9725. https://doi.org/10.1021/ac801716c
Ho, C.S., Lam, C.W.K., Chan, M.H.M., Cheung, R.C.K., Law, J.K., Lit, L.C.W., Ng, K.F., Suen, M.W.M., Tai, H.L. 2003. Electrospray ionisation mass spectrometry: Principles and clinical applications. Clin. Biochm. Rev. 24(1):3-12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1853331/
Hopfgartner, G., Husser, C., Zell, M. 2003. Rapid screening and characterization of drug metabolites using a new quadrupole-linear ion trap mass spectrometer. J. Mass Spectrom. 38(2):138-150. https://doi.org/10.1002/jms.420
Hoskins, J.N., Trimpin, S., Grayson, S.M. 2011. Architectural differentiation of linear and cyclic polymeric isomers by ion mobility spectrometry-mass spectrometry. Macromolecules 44(17):6915-6918. https://doi.org/10.1021/ma2012046
Huo, X., Shi, Z., Cheng, H. C., Sun, X., Ma, S. 2017. Fuel additive, and preparation method and usage method thereof. PCT Int. Appl., WO Patent 2017075197 A1 WO 20170504. https://patents.google.com/patent/WO2017075197A1/en
Ieritano, C., Hopkins, W.S. 2021. Assessing collision cross-section calculations using MobCal-MPI with a variety of commonly used computational methods. Mater. Today Commun. 27:102226. https://doi.org/10.1016/j.mtcomm.2021.102226
Ikonomou, M.G., Blades, A.T., Kebarle, P. 1991. Electrospray-ion spray: A comparison of mechanisms and performance. Anal. Chem. 63(18):1989-1998. https://doi.org/10.1021/ac00018a017
Izunobi, J.U., Higginbotham, C.I. 2011. Polymer molecular weight analysis by 1 H NMR spectroscopy. J. Chem. Educ. 88(8):1098-1104. https://doi.org/10.1021/ed100461v
Jackson, A.T., Yates, H.T., Scrivens, J.H., Critchley, G., Brown, J., Green, M.R., Bateman, R.H. 1996. The application of matrix-assisted laser desorption/ionization combined with collision-induced dissociation to the analysis of synthetic polymers. Rapid Commun. Mass Spectrom. 10(13): 1668-1674. https://doi.org/10.1002/(SICI)1097-0231(199610)10:13%3C1668::AID-RCM703%3E3.0.CO;2-I
Jarrold, M.F. 2022. Applications of charge detection mass spectrometry in molecular biology and biotechnology. Chem. Rev. 122(8):7415-7441. https://doi.org/10.1021/acs.chemrev.1c00377
Jedliński, Z., Adamus, G., Kowalczuk, M., Schubert, R., Szewczuk, Z., Stefanowicz, P. 1998. Electrospray tandem mass spectrometry of poly(3-hydroxybutanoic acid) end groups analysis and fragmentation mechanism. Rapid Commun. Mass Spectrom. 12(7):357-360. https://doi.org/10.1002/(SICI)1097-0231(19980415)12:7%3C357::AID-RCM172%3E3.0.CO;2-C
Karar, N., Gupta, T.K. 2015. Study of polymers and their blends using TOF-SIMS ion imaging. Vacuum 111:119-123. https://doi.org/10.1016/J.VACUUM.2014.10.006
Karas, M., Bachmann, D., Bahr, U., Hillenkamp, F. 1987. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Proc. 78:53-68. https://doi.org/10.1016/0168-1176(87)87041-6
Karas, M., Krüger, R. 2003. Ion formation in MALDI: The cluster ionization mechanism. Chem. Rev. 103(2):427-40. https://doi.org/10.1021/cr010376a
Kassalainen, G.E., Williams, S.K.R. 2003. Coupling thermal field-flow fractionation with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the analysis of synthetic polymers. Anal. Chem. 75(8):1887-1894. https://doi.org/10.1021/ac020594j
Katzenmeyer, B.C., Cool, L.R., Williams, J.P., Craven, K., Brown, J.M., Wesdemiotis, C. 2015. Electron transfer dissociation of sodium cationized polyesters: Reaction time effects and combination with collisional activation and ion mobility separation. Int. J. Mass Spectrum. 378:303-311. https://doi.org/10.1016/j.ijms.2014.09.021
Katzenmeyer, B.C., Hague, S.F., Wesdemiotis, C. 2016. Multidimensional mass spectrometry coupled with separation by polarity or shape for the characterization of sugar-based nonionic surfactants. Anal. Chem. 88(1):851-857. https://doi.org/10.1021/acs.analchem.5b03400
Keating, A.R., Wesdemiotis, C. 2023. A rapid and simple quantitation of average polymer molecular weight and composition via ESI-MS and a Bayesian universal charge deconvolution. Rapid Commun. Mass Spectrom. 37(8):e9478. https://doi.org/10.1002/rcm.9478
Keller, C., Maeda, J., Jayaraman, D., Chakraborty, S., Sussman, M.R., Harris, J.M., Ané, J.-M., Li, L. 2018. Comparison of vacuum MALDI and AP-MALDI platforms for the mass spectrometry imaging of metabolites involved in salt stress in Medicago truncatula. Front. Plant. Sci. 9:1238. https://doi.org/10.3389/fpls.2018.01238
Kendrick, E. 1963. A mass scale based on CH2 = 14.0000 for high-resolution mass spectrometry of organic compounds. Anal. Chem. 35(13):2146-2154. https://doi.org/10.1021/ac60206a048
Konermann, L., Ahadi, E., Rodriguez, A.D., Vahidi, S. 2013. Unraveling the mechanism of electrospray ionization. Anal. Chem. 85(1):2-9. https://doi.org/10.1021/ac302789c
Kötter, F., Benninghoven, A. 1998. Secondary ion emission from polymer surfaces under Ar+, Xe+ and SF5+ ion bombardment. Appl. Surf. Sci. 133(1-2):47-57. https://doi.org/10.1016/S0169-4332(97)00515-1
Krueger, K., Terne, C., Werner, C., Freudenberg, U., Jankowski, V., Zidek, W., Jankowski, J. 2013. Characterization of polymer membranes by MALDI mass-spectrometric imaging techniques. Anal. Chem. 85(10):4998-5004. https://doi.org/10.1021/ac4002063
Kussmann, M., Roepstorff, P. 2000. Sample preparation techniques for peptides and proteins analyzed by MALDI-MS. In: Chapman, J.R. (Ed.). Mass Spectrometry of Proteins and Peptides, Humana Press, Totowa, NJ, pp. 405-424. https://doi.org/10.1385/1-59259-045-4:405
Lacroix-Andrivet, O., Moualdi, S., Hubert-Roux, M., Loutelier Bourhis, C., Mendes Siqueira, A.L., Afonso, C. 2022. Molecular characterization of formulated lubricants and additive packages using Kendrick mass defect determined by Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 33(7):1194-1203. https://doi.org/10.1021/jasms.2c00050
Laiko, V.V., Moyer, S.C., Cotter, R.J. 2000. Atmospheric pressure MALDI/ion trap mass spectrometry. Anal. Chem. 72(21):5239-5243. https://doi.org/10.1021/ac000530d
Lattimer, R.P. 1989. Field ionization and field desorption mass spectrometry: Past, present, and future. Anal. Chem. 61(21):1201A-1215A. https://doi.org/10.1021/ac00196a001
Lattimer, R.P., Polce, M.J., Wesdemiotis, C. 1998. MALDI-MS analysis of pyrolysis products from a segmented polyurethane. J. Anal. Appl. Pyrol. 48(1):1-15. https://doi.org/10.1016/S0165-2370(98)00092-8
Lebeau, D., Ferry, M. 2015. Direct characterization of polyurethanes and additives by atmospheric solid analysis probe with time-of-flight mass spectrometry (ASAP-TOF-MS). Anal. Bioanal. Chem. 407:7175-7187. https://doi.org/10.1007/s00216-015-8881-1
Lee, S., Choi, H., Chang, T., Staal, B. 2018. Two-dimensional liquid chromatography analysis of polystyrene/polybutadiene block copolymers. Anal. Chem. 90(10):6259-6266. https://doi.org/10.1021/acs.analchem.8b00913
Li, X., Chan, Y.-T., Newkome, G.R., Wesdemiotis, C. 2011. Gradient tandem mass spectrometry interfaced with ion mobility separation for the characterization of supramolecular architectures. Anal. Chem. 83(4):1284-1290. https://doi.org/10.1021/ac1022875
Li, X., Guo, L., Casiano-Maldonado, M., Zhang, D., Wesdemiotis, C. 2011. Top-down multidimensional mass spectrometry methods for synthetic polymer analysis. Macromolecules 44(12):4555-4564. https://doi.org/10.1021/ma200542p
Ligon, S.C., Liska, R., Stampfl, J., Gurr, M., Mulhaupt, R. 2017. Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117(15):10212-10290. https://doi.org/10.1021/acs.chemrev.7b00074
Liu, X.M., Mariarz, E.P., Heiler, D.J., Grobe, G.L. 2003. Comparative studies of poly(dimethyl siloxanes) using automated GPC-MALDI-TOF MS and on-line GPC-ESI-TOF MS. J Am Soc Mass Spectrom 14(3):195-202. https://doi.org/10.1016/S1044-0305(02)00908-X
Liu, X., Lin, K., Kasko, A.M., Wesdemiotis, C. 2015. Tandem mass spectrometry and ion mobility mass spectrometry for the analysis of molecular sequence and architecture of hyperbranched glycopolymers. Analyst 140:1182-1191. https://doi.org/10.1039/C4AN01599A
Liu, Y., Lee, J., Mansfield, K.M., Ko, J.H., Sallam, S., Wesdemiotis, C., Maynard, H.D. 2017. Trehalose glycopolymer enhances both solution stability and pharmacokinetics of a therapeutic protein. Bioconjugate Chem. 28(3):836-845. https://doi.org/10.1021/acs.bioconjchem.6b00659
Lou, X., van Dongen, J.L.J., Peeters, J.W., Janssen, H.M. 2022. Disentangle a complex MALDI TOF mass spectrum of polyethylene glycols into three separate spectra via selective formation of protonated ions and sodium or potassium adducts. J. Am. Soc. Mass Spectrom. 33(12):2333-2337. https://doi.org/10.1021/jasms.2c00250
Lydic, T.A., Busik, J.V., Esselman, W.J., Reid, G.E. 2009. Complementary precursor ion and neutral loss scan mode tandem mass spectrometry for the analysis of glycerophosphatidylethanolamine lipids from whole rat retina. Anal. Bioanal. Chem. 394:267-275. https://doi.org/10.1007/s00216-009-2717-9
Ma, Q., Zhang, Y., Zhai, J., Chen, X., Du, Z., Li, W., Bai, H. 2019. Characterization and analysis of non-ionic surfactants by supercritical fluid chromatography combined with ion mobility spectrometry-mass spectrometry. Anal. Bioanal. Chem. 411(13):2759-2765. https://doi.org/10.1007/s00216-019-01777-3
Mao, J., Zhang, B., Zhang, H., Elupula, R., Grayson, S.M., Wesdemiotis, C. 2019. Elucidating branching topology and branch lengths in star-branched polymers by tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 30(10):1981-1991. https://doi.org/10.1007/s13361-019-02260-0
Mao, J., Zhang, W., Cheng, S.Z.D., Wesdemiotis, C. 2019. Analysis of monodisperse, sequence-defined, and POSS-functionalized polyester copolymers by MALDI tandem mass spectrometry. Eur. J. Mass Spectrom. 25(1):164-174. https://doi.org/10.1177/1469066719828875
Marshall, A.G., Rodgers, R.P. 2008. Petroleomics: Chemistry of the underworld. Proc. Natl. Acad. Sci. USA 105(47):18090-18095. https://doi.org/10.1073/pnas.0805069105
Marty, M.T. 2022. UniDec Version 5.1.1. https://github.com/michaelmarty/UniDec/releases (accessed on 18 September 2022).
Marty, M.T., Baldwin, A.J., Marklund, E.G., Hochberg, G.K.A., Benesch, J.L.P., Robinson, C.V. 2015. Bayesian deconvolution of mass and ion mobility spectra: From binary interactions to polydisperse ensembles. Anal. Chem. 87(8):4370-4376. https://doi.org/10.1021/acs.analchem.5b00140
May, J.C., McLean, J.A. 2015. Ion mobility-mass spectrometry: Time-dispersive instrumentation, Anal. Chem. 87(3):1422-1436. https://doi.org/10.1021/ac504720m
McCullough, B.J., Patel, K., Francis, R., Cain, P., Douce, D., Whyatt, K., Bajic, S., Lumley, N., Hopley, C. 2020. Atmospheric solids analysis probe coupled to a portable mass spectrometer for rapid identification of bulk drug seizures. J. Am. Soc. Mass Spectrom. 31(2):386-393. https://doi.org/10.1021/jasms.9b00020
McEwen, C.N., McKay, R.G., Larsen, B.S. 2005. Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments. Anal. Chem. 77(23):7826-7831. https://doi.org/10.1021/ac051470k
Mei, H., Laws, T.S., Mahalik, J.P., Li, J., Mah, A.H., Terlier, T., Bonnesen, P., Uhrig, D., Kumar, R., Stein, G.E., Verduzco, R. 2019. Entropy and enthalpy mediated segregation of bottlebrush copolymers to interfaces. Macromolecules 52(22):8910-8922. https://doi.org/10.1021/acs.macromol.9b01801
Mei, H., Laws, T.S., Terlier, T., Verduzco, V., Stein, G.E. 2022. Characterization of polymeric surfaces and interfaces using time-of-flight secondary ion mass spectrometry. J. Polym. Sci. 60(7):1174-1198. https://doi.org/10.1002/POL.20210282
Meier, F., Park, M.A., Mann, M. 2021. Trapped ion mobility spectrometry and parallel accumulation-serial fragmentation in proteomics. Mol. Cell. Proteomics 20:100138. https://doi.org/10.1016/j.mcpro.2021.100138
Metwally, H., Duez, Q., Konermann, L. 2018. Chain ejection model for electrospray ionization of unfolded proteins: Evidence from atomistic simulations and ion mobility spectrometry. Anal. Chem. 90(16):10069-10077. https://doi.org/10.1021/acs.analchem.8b02926
Mikhael, A., Fridgen, T.D., Delmas, M., Banoub, J. 2021 Top-down lignomics analysis of the French oak lignin by atmospheric pressure photoionization and electrospray ionization quadrupole time-of-flight tandem mass spectrometry: Identification of a novel series of lignans. J. Mass Spectrom. 56(1):e4676. https://doi.org/10.1002/jms.4676
Molenaar, S.R.A., van de Put, B., Desport, J.S., Samanipour, S., Peters, R.A.H., Pirok, B.W.J. 2022. Automated feature mining for two-dimensional liquid chromatography applied to polymers enabled by mass remainder analysis. Anal. Chem. 94(14):5599-5607. https://doi.org/10.1021/acs.analchem.1c05336
Montaudo, G., Carroccio, S., Puglisi, C. 2002. Thermal oxidation of poly(bisphenol A carbonate) investigated by SEC/MALDI. Polym. Degrad. Stabil. 77(1):137-146. https://doi.org/10.1016/S0141-3910(02)00092-7
Montaudo, G., Samperi, F., Montaudo, M.S. 2006. Characterization of synthetic polymers by MALDI-MS. Progr. Polym. Sci. 31(3):277-357. https://doi.org/10.1016/j.progpolymsci.2005.12.001
Morgan, T.E., Ellacott, S.H., Wootton, C.A., Barrow, M.P., Bristow, A.W.T., Perrier, S., O'Connor, P.B. 2018. Coupling electron capture dissociation and the modified Kendrick mass defect for sequencing of a poly(2-ethyl-2-oxazoline) polymer. Anal. Chem. 90(19):11710-11715. https://doi.org/10.1021/acs.analchem.8b03591
Morsa, D., Defize, T., Dehareng, D., Jérôme, C., De Pauw, E. 2014. Polymer topology revealed by ion mobility coupled with mass spectrometry. Anal. Chem. 86(19):9693-9700. https://doi.org/10.1021/ac502246g
Nagy, T., Kuki, Á., Zsuga, M., Kéki, S. 2018. Mass-remainder analysis (MARA): A new data mining tool for copolymer characterization. Anal. Chem. 90(6);3892-3897. https://doi.org/10.1021/acs.analchem.7b04730
Nefliu, M., Venter, A., Cooks, R.G. 2006. Desorption electrospray ionization and electrosonic spray ionization for solid- and solution-phase analysis of industrial polymers. Chem. Commun. 8:888-890. https://doi.org/10.1039/B514057A
Neira-Velázquez, M.G., Rodríguez-Hernández, M.T., Hernández-Hernández, E., Ruiz-Martínez, A.R.Y. 2013. Polymer molecular weight measurement. In: Saldívar-Guerra, E., Vivaldo-Lima, E. (Eds.). Handbook of Polymer Synthesis, Characterization, and Processing, John Wiley & Sons, Hoboken, New Jersey, chapter 17, pp. 355-366. https://doi.org/10.1002/9781118480793.ch17
Neumann, E.K., Djambazova, K.V., Caprioli, R.M., Spraggins, J.M. 2020. Multimodal imaging mass spectrometry: Next generation molecular mapping in biology and medicine. J. Am. Soc. Mass Spectrom. 31(12):2401-2415. https://doi.org/10.1021/jasms.0c00232
Nielen, M.W.F. 1999. Maldi time-of-flight mass spectrometry of synthetic polymers. Mass Spectrom. Rev. 18(5):309-344. https://doi.org/10.1002/(SICI)1098-2787(1999)18:5%3C309::AID-MAS2%3E3.0.CO;2-L
Nielen, M.W.F., Buijtenhuijs (Ab), F.A. 1999. Polymer analysis by liquid chromatography/electrospray ionization time-of-flight mass spectrometry. Anal. Chem. 71(9):1809-1814. https://doi.org/10.1021/ac981141a
Nielen, M.W.F., Malucha, S. 1997. Characterization of polydisperse synthetic polymers by size-exclusion chromatography/matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 11(11):1194-1204. https://doi.org/10.1002/(SICI)1097-0231(199707)11:11%3C1194::AID-RCM935%3E3.0.CO;2-L
Nyadong, L., Hohenstein, E.G., Galhena, A., Lane, A.L., Kubanek, J., Sherrill, C.D., Fernández, F.M. 2009. Reactive desorption electrospray ionization mass spectrometry (DESI-MS) of natural products of a marine alga. Anal. Bioanal. Chem. 394(1):245-254. https://doi.org/10.1007/S00216-009-2674-3
O'Neill, J.M., Mao, J., Haque, F.M., Barroso-Bujans, F., Grayson, S.M., Wesdemiotis, C. 2022. Separation, identification, and confirmation of cyclic and tadpole macromolecules via UPLC-MS/MS. Analyst 147(10):2089-2096. https://doi.org/10.1039/D2AN00208F
Osorio, J., Aznar, M., Nerín, C., Elliott, C., Chevallier, O. 2022. Comparison of LC-ESI, DART, and ASAP for the analysis of oligomers migration from biopolymer food packaging materials in food (simulants). Anal. Bioanal. Chem. 414:1335-1345. https://doi.org/10.1007/s00216-021-03755-0
Pasch, H. 2013. Hyphenated separation techniques for complex polymers. Polym. Chem. 4(9):2628-2650. https://doi.org/10.1039/c3py21095b
Patil, A.A., Chiang, C.-K., Wen, C.-H., Peng, W.-P. 2018. Forced dried droplet method for MALDI sample preparation. Anal. Chim. Acta 1031:128-133. https://doi.org/10.1016/j.aca.2018.05.056
Pavlovich, M.J., Musselman, B., Hall, A.B. 2018. Direct analysis in real-time-Mass spectrometry (DART-MS) in forensic and security applications. Mass Spectrom. Rev. 37(2):171-187. https://doi.org/10.1002/mas.21509
Payne, M.E., Kareem, O.O., Williams-Pavlantos, K., Wesdemiotis, C., Grayson, S.M. 2021. Mass spectrometry investigation into the oxidative degradation of poly(ethylene glycol). Polym. Degrad. Stabil. 183:109388. https://doi.org/10.1016/j.polymdegradstab.2020.109388
Pierson, E.E., Midey, A.J., Forrest, W.P., Shah, V., Olivos, H.J., Shrestha, B., Teller, R., Forster, S., Bensussan, A., Helmy, R. 2020. Direct drug analysis in polymeric implants using desorption electrospray ionization-mass spectrometry imaging (DESI-MSI). Pharm. Res. 37(6):1-11. https://doi.org/10.1007/S11095-020-02823-X
Pimlott, D.J.D., Konermann, L. 2021. Using covalent modifications to distinguish protein electrospray mechanisms: Charged residue model (CRM) vs. chain ejection model (CEM). Int. J. Mass Spectrom. 469:116678. https://doi.org/10.1016/j.ijms.2021.116678
Pizzo, J.S., Cruz, V.H.M., Santos, P.D.S., Silva, G.R., Souza, P.M., Manin, L.P., Santos, O.O., Visentainer, J.V. 2022. Instantaneous characterization of crude vegetable oils via triacylglycerols fingerprint by atmospheric solids analysis probe tandem mass spectrometry with multiple neutral loss scans. Food Control 134:108710. https://doi.org/10.1016/j.foodcont.2021.108710
Polce, M.J., Ocampo, M., Quirk, R.P., Wesdemiotis, C. 2008. Tandem mass spectrometry characteristics of silver-cationized polystyrenes: Backbone degradation via free radical chemistry. Anal. Chem. 80(2):347-354. https://doi.org/10.1021/ac071071k
Polce, M.J., Wesdemiotis, C. 2010. Tandem mass spectrometry and polymer ion dissociation. In: Li, L. (Ed.). MALDI Mass Spectrometry for Synthetic Polymer Analysis, John Wiley & Sons, Inc., Hoboken, NJ, pp. 85-127. https://doi.org/10.1002/9780470567234.ch5
Pretorius, N.O., Rhode, K., Simpson, J.M., Pasch, H. 2015. Characterization of complex phthalic acid/propylene glycol-based polyesters by the combination of 2D chromatography and MALDI-TOF mass spectrometry. Anal. Bioanal. Chem. 407(1):217-230. https://doi.org/10.1007/S00216-014-7762-3
Prian, K., Aloui, I., Legros, V., Buchmann, W. 2019. Study of the gas-phase decomposition of multiply lithiated polycaprolactone, polytetrahydrofurane and their copolymer by two different activation methods: Collision-induced dissociation and electron transfer dissociation. Anal. Chim. Acta 1048:85-95. https://doi.org/10.1016/j.aca.2018.10.003
Pringle, S.D., Giles, K., Wildgoose, J.L., Williams, J.P., Slade, S.E., Thalassinos, K., Bateman, R.H., Bowers, M.T., Scrivens, J.H. 2007. An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int. J. Mass Spectrom. 261(1):1-12. https://doi.org/10.1016/j.ijms.2006.07.021
Quirk, R.P., Kim, H., Polce, M.J., Wesdemiotis, C. 2005. Anionic synthesis of primary amine functionalized polystyrenes via hydrosilation of allylamines with silyl hydride functionalized polystyrenes. Macromolecules 38(19):7895-7906. https://doi.org/10.1021/ma0513261
Quirk, R.P., Mathers, R.T., Wesdemiotis, C., Arnould, M.A. 2002. Investigation of ethylene oxide oligomerization during functionalization of poly(styryl)lithium using MALDI-TOF MS and NMR. Macromolecules 35(8):2912-2918. https://doi.org/10.1021/ma011978z
Quirk, R.P., Ocampo, M., King, R.L., Polce, M.J., Wesdemiotis, C. 2008. Anionic synthesis of trialkoxysilyl-functionalized polymers. Rubber Chem. Technol. 81(1):77-95. https://doi.org/10.5254/1.3548199
Rabbani, S., Barber, A.M., Fletcher, J.S., Lockyer, N.P., Vickerman, J.S. 2011. TOF-SIMS with argon gas cluster ion beams: A comparison with C60+. Anal. Chem. 83(10):3793-3800. https://doi.org/10.1021/ac200288v
Räder, H.J., Schrepp, W. 1999. MALDI-TOF mass spectrometry in the analysis of synthetic polymers. PActa Polymer. 49(6):272-293. https://doi.org/10.1002/(SICI)1521-4044(199806)49:6%3C272::AID-APOL272%3E3.0.CO;2-1
Rial-Otero, R., Galesio, M., Capelo, J.L., Simal-Gándara, J. 2009. A review of synthetic polymer characterization by pyrolysis-GC-MS. Chromatographia 70:339-348. https://doi.org/10.1365/s10337-009-1254-1
Rivas, D., Ginebreda, A., Pérez, S., Quero, C., Barceló, D. 2016. MALDI-TOF MS imaging evidences spatial differences in the degradation of solid polycaprolactone diol in water under aerobic and denitrifying conditions. Sci. Total Environ. 566-567:27-33. https://doi.org/10.1016/J.SCITOTENV.2016.05.090
Roling, O., DeBruycker, K., Vonhören, B., Stricker, L., Körsgen, M., Arlinghaus, H.F., Ravoo, B.J., DuPrez, F.E. 2015. Rewritable polymer brush micropatterns grafted by triazolinedione click chemistry. Angew. Chem. Int. Ed. 54(44):13126-13129. https://doi.org/10.1002/anie.201506361
Rolland, A.D., Prell, J.S. Computational insights into compaction of gas-phase protein and protein complex ions in native ion mobility-mass spectrometry. 2019. Trends Anal. Chem. 116:282-291. https://doi.org/10.1016/j.trac.2019.04.023
Roszak, I., Oswald, L., Al Ouahabi, A., Bertin, A., Laurent, E., Felix, O., Carvin-Sergent, I., Charle, L., Lutz, J.-F. 2021. Synthesis and sequencing of informational poly(amino phosphodiester)s. Polym. Chem. 12:5279-5282. https://doi.org/10.1039/D1PY01052B
Roy, R., Meszynska, A., Laure, C., Charles, L., Verchin, C., Lutz, J.-F. 2015. Design and synthesis of digitally encoded polymers that can be decoded and erased. Nat. Commun. 6:7237. https://doi.org/10.1038/ncomms8237
Rymuszka, D., Terpiłowski, K., Borowski, P., Holysz, L. 2016. Time-dependent changes of surface properties of polyether ether ketone caused by air plasma treatment. Polym. Int. 65(7):827-834. https://doi.org/10.1002/PI.5141
Saglam, N., Korkusuz, F., Prasad, R. (Eds.) 2021. Nanotechnology Applications in Health and Environmental Sciences, Springer Nature, Cham, Switzerland, https://doi.org/10.1007/978-3-030-64410-9
Sallam, S., Dolog, I., Paik, B.A., Jia, X., Kiick, K.L., Wesdemiotis, C. 2018. Sequence and conformational analysis of peptide-polymer bioconjugates by multidimensional mass spectrometry. Biomacromolecules 19(5):1498-1507. https://doi.org/10.1021/acs.biomac.7b01694
Sato, H., Nakamura, S., Teramoto, K., Sato, T. 2014. Structural characterization of polymers by MALDI spiral-TOF mass spectrometry combined with Kendrick mass defect analysis. J. Am. Soc. Mass Spectrom. 25(8):1346-1355. https://doi.org/10.1007/s13361-014-0915-y
Schoenmakers, P., Aarnoutse, P. 2014. Multi-dimensional separations of polymers. Anal. Chem. 86(13):6172-6179. https://doi.org/10.1021/ac301162b
Scionti, V., Katzenmeyer, B.C., Solak, N., Li, X., Wesdemiotis, C. 2012. Interfacing multistage mass spectrometry with liquid chromatography or ion mobility separation for synthetic polymer analysis. Eur. J. Mass Spectrom. 18(2):113-137. https://doi.org/10.1255/ejms.1175
Scionti, V., Wesdemiotis, C. 2012a. Electron transfer dissociation versus collisionally activated dissociation of cationized biodegradable polyesters. J. Mass Spectrom. 47(11):1442-1449. https://doi.org/10.1002/jms.3097
Scionti, V., Wesdemiotis, C. 2012b. Tandem mass spectrometry analysis of polymer structures and architectures. In: Barner-Kowollik, C., Gruendling, T., Falkenhagen, J., Weidner, S. (Eds.). Mass Spectrometry in Polymer Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, chapter 3, pp. 57-84. https://doi.org/10.1002/9783527641826.ch3
Selby, T.L., Wesdemiotis, C., Lattimer, R.P. 1994. Dissociation characteristics of [M + X]+ ions (X = H, Li, Na, K) from linear and cyclic polyglycols. J. Am. Soc. Mass Spectrom. 5:1081-1092. https://doi.org/10.1016/1044-0305(94)85069-0
Seo, S.E., Hawker, C.J. 2020. The beauty of branching in polymer science. Macromolecules 53(9):3257-3261. https://doi.org/10.1021/acs.macromol.0c00286
Shao, Y., Chen, J., Ren, X.-K., Zhang, X., Yin, G.-Z., Li, X., Wang, J., Wesdemiotis, C., Zhang, W.-B., Yang, S., Sun, B., Zhu, M. 2019. Synthesis, self-assembly and characterization of tandem triblock BPOSS-PDI-X shape amphiphiles. Molecules 24(11):2114. https://doi.org/10.3390/molecules24112114
Shi, C., Gerișlioǧlu, S., Wesdemiotis, C. 2016. Ultrahigh performance liquid chromatography interfaced with mass spectrometry and orthogonal ion mobility separation for the microstructure characterization of amphiphilic block copolymers. Chromatographia 79:961-969. https://doi.org/10.1007/s10337-016-3077-1
Shimada, K., Lusenkova, M.A., Sato, K., Saito, T., Matsuyama, S., Nakahara, H., Kinugasa, S. 2001. Evaluation of mass discrimination effects in the quantitative analysis of polydisperse polymers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using uniform oligostyrenes. Rapid Commun. Mass Spectrom. 15(4):277-282. https://doi.org/10.1002/rcm.224
Shimizu, Y., Munson, B. 1979. Pyrolysis/chemical ionization mass spectrometry of polymers. J. Polym. Sci.: Polym. Chem. 17(7):1991-2001. https://doi.org/10.1002/pol.1979.170170709
Siddhant, M., Smita, G., Vaishali, J., Ashish, J. 2018. HPLC-high-performance liquid chromatography & UPLC-ultra performance liquid chromatographic system-A review on modern liquid chromatography. Indo Am. J. Pharm. Sci. 5(8):7590-7602. https://doi.org/10.5281/zenodo.1401201
Silva, L.M.A., Alves Filho, E.G., Simpson, A.J., Monteiro, M.R., Cabral, E., Ifa, D., Venâncio, T. 2017. DESI-MS imaging and NMR spectroscopy to investigate the influence of biodiesel in the structure of commercial rubbers. Talanta 173:22-27. https://doi.org/10.1016/J.TALANTA.2017.05.060
Sisco, E., Staymates, M.E., Forbes, T.P. 2020. Optimization of confined direct analysis in real-time mass spectrometry (DART-MS). Analyst 145:2743-2750. https://doi.org/10.1039/D0AN00031K
Siuzdak, G. 2006. The Expanding Role of Mass Spectrometry in Biotechnology, 2nd ed, MCC Press, San Diego, CA. https://masspec.scripps.edu/learn/mass-spectrometry-in-biotechnology-2nd-ed-gary-siuzdak.pdf
Skelton, R., Dubois, F., Zenobi, R. 2000. A MALDI sample preparation method suitable for insoluble polymers. Anal. Chem. 72(7):1707-1710. https://doi.org/10.1021/ac991181u
Smith, M.J.P., Cameron, N.R., Mosely, J.A. 2012. Evaluating atmospheric pressure solids analysis probe (ASAP) mass spectrometry for the analysis of low molecular weight synthetic polymers. Analyst 137:4524-4530. https://doi.org/10.1039/C2AN35556F
Snyder, S.R., Wei, W., Xiong, H., Wesdemiotis, C. 2019. Sequencing side-chain liquid crystalline copolymers by matrix-assisted laser desorption/ionization tandem mass spectrometry. Polymers 11(7):1118. https://doi.org/10.3390/polym11071118
Snyder, S.R., Wesdemiotis, C. 2021. Elucidation of low molecular weight polymers in vehicular engine deposits by multidimensional mass spectrometry. Energy Fuels 35(2):1691-1700. https://doi.org/10.1021/acs.energyfuels.0c02702
Soeriyadi, A.H., Whittaker, M.R., Boyer, C., Davis, T.P. 2013. Soft ionization mass spectroscopy: Insights into the polymerization mechanism. J. Polym. Sci. A: Polym. Chem. 51(7):1475-1505. https://doi.org/10.1002/pola.26536
Solak Erdem, N., Alawani, N., Wesdemiotis, C. 2014. Characterization of polysorbate 85, a nonionic surfactant, by liquid chromatography vs. ion mobility separation coupled with tandem mass spectrometry. Anal. Chim. Acta 808:83-93. https://doi.org/10.1016/j.aca.2013.07.026
Song, L., Chuah, W.C., Remsen, X.L., Bartmess, J.E. 2018. Ionization mechanism of positive-Ion nitrogen direct analysis in real-time. J. Am. Soc. Mass Spectrom. 29(4):640-650. https://doi.org/10.1007/s13361-017-1885-7
Striegel, A.M. 2005. Multiple detection in size-exclusion chromatography of macromolecules. Anal. Chem. 77(5):104A-113A. https://doi.org/10.1021/ac053345e
Takáts, Z., Wiseman, J.M., Cooks, R.G. 2005. Ambient mass spectrometry using desorption electrospray ionization (DESI): Instrumentation, mechanisms and applications in forensics, chemistry, and biology. J. Mass Spectrom. 40(10):1261-1275. https://doi.org/10.1002/JMS.922
Takáts, Z., Wiseman, J.M., Gologan, B., Cooks, R.G. 2004. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695):471-473. https://doi.org/10.1126/science.1104404
Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T., Matsuo, T. 1988. Protein and polymer analyses up to m/z 100,000 by laser ionization time-of flight mass spectrometry. Rapid Commun. Mass Specttrom. 2(20):151-153. https://doi.org/10.1002/rcm.1290020802
Teraoka, I. 2004. Calibration of retention volume in size exclusion chromatography by hydrodynamic radius. Macromolecules 37(17):6632-6639. https://doi.org/10.1021/ma0494939
Thakur, V.K., Thakur, M.K., Raghavan, P., Kessler, M.R. 2014. Progress in green polymer composites from lignin for multifunctional applications: A review. ACS Sustainable Chem. Eng. 2(5):1072-1092. https://doi.org/10.1021/sc500087z
Thalassinos, K., Jackson, A.T., Williams, J.P., Hilton, G.R., Slade, S.E., Scrivens, J.H. 2007. Novel software for the assignment of peaks from tandem mass spectrometry spectra of synthetic polymers. J. Am. Soc. Mass Spectrom. 18(7):1324-1331. https://doi.org/10.1016/j.jasms.2007.04.006
Thomas, R.K., Penfold, J. 1996. Neutron and X-ray reflectometry of interfacial systems in colloid and polymer chemistry. Curr. Opin. Colloid Interface Sci. 1(1):23-33. https://doi.org/10.1016/S1359-0294(96)80040-9
Toney, M., Baiamonte, L., Smith, W.C., Williams, S.K.R. 2021. Field-flow fractionation techniques for polymer characterization. In: Malik, M.I., Mays, J., Shah, M.R. (Eds.). Molecular Characterization of Polymers, Elsevier, Amsterdam, Netherlands, chapter 4, pp. 129-171. https://doi.org/10.1016/B978-0-12-819768-4.00004-X
Torikai, N. 2011. Neutron reflectometry. In: Imae, T., Kanaya, T., Furusaka, M., Torikai, N. (Eds.). Neutrons in Soft Matter, John Wiley & Sons, Hoboken, NJ, chapter II.2, pp. 115-145. https://doi.org/10.1002/9780470933886.CH5
Tose, L.V., Murgu, M., Vaz, B.G., Romão, W. 2017. Application of atmospheric solids analysis probe mass spectrometry (ASAP-MS) in petroleomics: Analysis of condensed aromatics standards, crude oil, and paraffinic fraction. J. Am. Soc. Mass Spectrom. 28(11):2401-2407. https://doi.org/10.1007/s13361-017-1764-2
Town, J.S., Jones, G.R., Hancox, E., Shegiwal, A., Haddleton, D.M. 2019. Tandem mass spectrometry for polymeric structure analysis: A comparison of two common MALDI-ToF/ToF techniques. Macromol. Rapid Commun. 40(13):1900088. https://doi.org/10.1002/marc.201900088
Treat, N.D., Brady, M.A., Smith, G., Toney, M.F., Kramer, E.J., Hawker, C J., Chabinyc, M.L. 2011. Interdiffusion of PCBM and P3HT reveals miscibility in a photovoltaically active blend. Adv. Energy Mater. 1(1):82-89. https://doi.org/10.1002/aenm.201000023
Trimpin, S., Keune, S., Räder, H.J., Müllen, K. 2006. Solvent-free MALDI-MS: Developmental improvements in the reliability and the potential of MALDI in the analysis of synthetic polymers and giant organic molecules. J. Am. Soc. Mass Spectrum. 17(5):661-671. https://doi.org/10.1016/j.jasms.2006.01.007
Trimpin, S., Wijerathne, K., McEwen, C.N. 2009. Rapid methods of polymer and polymer additives identification: Multi-sample solvent-free MALDI, pyrolysis at atmospheric pressure, and atmospheric solids analysis probe mass spectrometry. Anal. Chim. Acta 654(1):20-25. https://doi.org/10.1016/j.aca.2009.06.050
Tsuge, S., Ohtani, H. 1997. Structural characterization of polymeric materials by pyrolsis-GC/MS. Polym. Degrad. Stabil. 58(1-2):109-130. https://doi.org/10.1016/S0141-3910(97)00031-1
Uliyanchenko, E. 2017. Applications of hyphenated liquid chromatography techniques for polymer analysis. Chromatographia 80:731-750. https://doi.org/10.1007/s10337-016-3193-y
Uliyanchenko, E., Cools, P.J.C.H., van der Wal, S., Schoenmakers, P.J. 2012. Comprehensive two-dimensional ultrahigh-pressure liquid chromatography for separations of polymers. Anal. Chem. 84(18):7802-7809. https://doi.org/10.1021/ac3011582
Vaclavik, L., Krynitsky, A.J., Rader, J.I. 2014. Mass spectrometric analysis of pharmaceutical adulterants in products labeled as botanical dietary supplements or herbal remedies: A review. Anal. Bioanal. Chem. 406(27):6767-6790. https://doi.org/10.1007/s00216-014-8159-z
Van der Heide, P. 2014. Secondary Ion Mass Spectrometry: An Introduction to Principles and Practices. John Wiley & Sons, Inc., Hobokem, NJ. https://doi.org/10.1002/9781118916780
Vandencasteele, N., Reniers, F. 2010. Plasma-modified polymer surfaces: Characterization using XPS. J. Electron Spectrosc. 178-179:394-408. https://doi.org/10.1016/J.ELSPEC.2009.12.003
Vaysse, P.-M., Heeren, R.M.A., Porta, T., Balluff, B. 2017. Mass spectrometry imaging for clinical research-Latest developments, applications, and current limitations. Analyst 142:2690-2712. https://doi.org/10.1039/C7AN00565B
Vickerman, J.C., Gilmore, I.S. (Eds.). 2009. Surface Analysis: The Principal Techniques, 2nd ed., John Wiley & Sons Ltd., Chichester, United Kingdom. https://doi.org/10.1002/9780470721582
Volmer, D.A., Jessome, L.L. 2006. Ion suppression: A major concern in mass cpectrometry. LCGC North America 24(5):498-510. https://www.chromatographyonline.com/view/ion-suppression-major-concern-mass-spectrometry
Wang, S.-F., Li, X., Agapov, R.L., Wesdemiotis, C., Foster, M.D. 2012. Probing surface concentration of cyclic/linear blend films using surface layer MALDI-TOF mass spectrometry. ACS Mcro Lett. 1(8):1024-1027. https://doi.org/10.1021/MZ300271W
Waters Corporation. 2017. Atmospheric Pressure Ionization Sources: Their Use and Applicability. White Paper. Milford, MA. https://www.waters.com/webassets/cms/library/docs/720005935en.pdf
Wei, B., Gerislioglu, S., Atakay, M., Salih, B., Wesdemiotis, C. 2019. Characterization of supramolecular peptide-polymer bioconjugates using multistage tandem mass spectrometry. Int. J. Mass Spectrom. 436:130-136. https://doi.org/10.1016/j.ijms.2018.12.005
Wei, J., Tang, Y., Ridgeway, M.E., Park, M.A., Costello, C.E., Lin, C. 2020. Accurate identification of isomeric glycans by trapped ion mobility spectrometry-electronic excitation dissociation tandem mass spectrometry. Anal. Chem. 92(19):13211-13220. https://doi.org/10.1021/acs.analchem.0c02374
Weibel, D., Wong, S., Lockyer, N., Blenkinsopp, P., Hill, R., Vickerman, J.C. 2003. A C60 primary ion beam system for time of flight secondary ion mass spectrometry: Its development and secondary ion yield characteristics. Anal. Chem. 75(7):1754-1764. https://doi.org/10.1021/ac026338o
Weidner, S.M., Falkenhagen, J. 2009. Imaging mass spectrometry for examining localization of polymeric composition in matrix-assisted laser desorption/ionization samples. Rapid Commun. Mass Spectrom. 23(5): 653-660. https://doi.org/10.1002/rcm.3919
Wesdemiotis, C. Multidimensional mass spectrometry of synthetic polymers and advanced materials. 2017. Angew. Chem. Int. Ed. 56(6):1452-1464. https://doi.org/10.1002/anie.201607003
Wesdemiotis, C., Solak, N., Polce, M.J., Dabney, D.E., Chaicharoen, K., Katzenmeyer, B.C. 2011. Fragmentation pathways of polymer ions. Mass Spectrom. Rev. 30(4):523-559. https://doi.org/10.1002/mas.20282
Weston, D.J. 2010. Ambient ionization mass spectrometry: Current understanding of mechanistic theory; analytical performance and application areas. Analyst 135, 661-668. https://doi.org/10.1039/B925579F
Williams, D.H., Bradley, C., Bojesen, G., Santikarn, S., Taylorlb, L.C.E. 1981. Fast atom bombardment mass spectrometry: A powerful technique for the study of polar molecules. J. Am. Chem. Soc. 103(19):5700-5704. https://doi.org/10.1021/ja00409a013
Williams, K. 2019. How does multi-detector GPC/SEC work? https://www.materials-talks.com/how-does-multi-detector-gpc-sec-work/. (Accessed on 5 February 2023).
Williams, S.K.R., Lee, D. 2006. Field-flow fractionation of proteins, polysaccharides, synthetic polymers, and supramolecular assemblies. J. Sep. Sci. 29(12):1720-1732. https://doi.org/10.1002/jssc.200600151
Williams-Pavlantos, K., Wesdemiotis, C. 2021. Surface layer matrix assisted laser desorption ionization mass spectrometry imaging (SL-MALDI-MSI) of pharmaceutical-loaded polymer films. Proceedings of the 2021 ASMS Conference, October 31-November 4, 2021, Philadelphia, PA and Online. https://www.asms.org/publications/abstracts-and-proceedings
Wójtowicz, A., Wietecha-Posłuszny, R. 2019. DESI-MS analysis of human fluids and tissues for forensic applications. Appl. Phys. A 125(5):312. https://doi.org/10.1007/s00339-019-2564-2
Wollyung, K.M., Wesdemiotis, C., Nagy, A., Kennedy, J.P. 2005. Synthesis and mass spectrometry characterization of centrally and terminally amine-functionalized polyisobutylenes. J. Polym. Sci. A: Polym. Chem. 43(5):946-958. https://doi.org/10.1002/pola.20566
Wolstenholme, W.E. Correlation of physical and polymer chain properties. 1968. Polym. Eng. Sci. 8(2):142-150. https://doi.org/10.1002/pen.760080210
Xie, T.-Z., Endres, K.J., Guo, Z., Ludlow, J.M. III, Moorefield, C.N., Saunders, M.J., Wesdemiotis, C., Newkome, G.R. 2016. Controlled interconversion of superimposed-bistriangle, octahedron, and cuboctahedron cages constructed using a single, terpyridinyl-based polyligand and Zn2+. J. Am. Chem. Soc. 138(38):12344-12347. https://doi.org/10.1021/jacs.6b07969
Yang, P., Gao, W., Shulman, J.E., Chen, Y. 2018. Separation and identification of polymeric dispersants in detergents by two-dimensional liquid chromatography. J. Chromatogr. A 1566:111-117. https://doi.org/10.1016/j.chroma.2018.06.063
Yang, S.H., Chen, B., Wang, J., Zhang, K. 2020. Characterization of high molecular weight multi-arm functionalized PEG-maleimide for protein conjugation by charge-reduction mass spectrometry coupled to two-dimensional liquid chromatography. Anal. Chem. 92(12):8584-8590. https://doi.org/10.1021/acs.analchem.0c01567
Yao, M. 2014. Determining polymer blend surface concentration using surface layer matrix-assisted laser desorption ionization-time of flight mass spectrometry (SL-MALDI-TOF MS). M.S. Thesis, The University of Akron. http://rave.ohiolink.edu/etdc/view?acc_num=akron1407941345
Yol, A.M., Dabney, D.E., Wang, S.-F., Laurent, B.A., Foster, M.D., Quirk, R.P., Grayson, S.M., Wesdemiotis, C. 2013. Differentiation of linear and cyclic polymer architectures by MALDI tandem mass spectrometry (MALDI-MS2). J. Am. Soc. Mass Spectrom. 24(1):74-82. https://doi.org/10.1007/s13361-012-0497-5
Yol, A.M., Janoski, J., Quirk, R.P., Wesdemiotis, C. 2014. Sequence analysis of styrenic copolymers by tandem mass spectrometry. Anal. Chem. 86(19):9576-9582. https://doi.org/10.1021/ac5019815
Yunus, S., Delcorte, A., Poleunis, C., Bertrand, P., Bolognesi, A., Botta, C. 2007. A route to self-organized honeycomb microstructured polystyrene films and their chemical characterization by ToF-SIMS imaging. Adv. Funct. Mater. 17(7):1079-1084. https://doi.org/10.1002/ADFM.200600470
Žagar, E., Kržan, A., Adamus, G., Kowalczuk, M. 2006. Sequence distribution in microbial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polyesters determined by NMR and MS. Biomacromolecules 7(7):2210-2216. https://doi.org/10.1021/bm060201g
Zhang, L., Reilly, J.P. 2009. Peptide photodissociation with 157 nm light in a commercial tandem time-of-flight mass spectrometer. Anal. Chem. 81(18):7829-7838. https://doi.org/10.1021/ac9012557
Zhang, R., Miyoshi, T., Sun, P. (Eds.). 2019. NMR Methods for Characterization of Synthetic and Natural Polymers, Royal Society of Chemistry, Cambridge, UK. https://doi.org/10.1039/9781788016483
Zheng, J., Smith Callahan, L.A., Hao, J., Guo, K., Wesdemiotis, C., Weiss, R.A., Becker, M.L. 2012. Strain-promoted cross-linking of PEG-based hydrogels via copper-free cycloaddition. ACS macro Lett. 1(8):1071-1073. https://doi.org/10.1021/mz3003775
Zhou, W., Håkansson, K. 2011. Structural characterization of carbohydrates by Fourier transform tandem mass spectrometry. Curr. Proteomics 8(4):297-308. https://doi.org/10.2174/157016411798220826
Zhou, X.-L., Chen, S.-H. 1995. Theoretical foundation of X-ray and neutron reflectometry. Phys. Rep. 257(4-5):223-348. https://doi.org/10.1016/0370-1573(94)00110-O
Zughaibi, T.A., Steiner, R.R. 2020. Differentiating nylons using direct analysis in real time coupled to an AccuTOF time-of-flight mass spectrometer. J. Am. Soc. Mass Spectrom. 31(4):982-985. https://doi.org/10.1021/jasms.0c00051
Zydel, F., Smith, J.R., Pagnotti, V.S., Lawrence, R.J., McEwen, C.N., Capacio, B.R. 2012. Rapid screening of chemical warfare nerve agent metabolites in urine by atmospheric solids analysis probe-mass spectroscopy (ASAP-MS). Drug Test. Anal. 4(3-4):308-311. https://doi.org/10.1002/dta.1331

Auteurs

Chrys Wesdemiotis (C)

Department of Chemistry, The University of Akron, Akron, Ohio, USA.

Kayla N Williams-Pavlantos (KN)

Department of Chemistry, The University of Akron, Akron, Ohio, USA.

Addie R Keating (AR)

Department of Chemistry, The University of Akron, Akron, Ohio, USA.

Andrew S McGee (AS)

Department of Chemistry, The University of Akron, Akron, Ohio, USA.

Calum Bochenek (C)

Department of Chemistry, The University of Akron, Akron, Ohio, USA.

Classifications MeSH