3D atlas of cerebral neuropils with previously unknown demarcations in the honey bee brain.

3D reconstruction Apis mellifera hymenopteran brain insect brain atlas insect cerebrum multisensory integration social insect

Journal

The Journal of comparative neurology
ISSN: 1096-9861
Titre abrégé: J Comp Neurol
Pays: United States
ID NLM: 0406041

Informations de publication

Date de publication:
08 2023
Historique:
revised: 17 03 2023
received: 10 11 2022
accepted: 21 03 2023
medline: 8 6 2023
pubmed: 19 4 2023
entrez: 18 4 2023
Statut: ppublish

Résumé

Honey bees (Apis mellifera) express remarkable social interactions and cognitive capabilities that have been studied extensively. In many cases, behavioral studies were accompanied by neurophysiological and neuroanatomical investigations. While most studies have focused on primary sensory neuropils, such as the optic lobes or antennal lobes, and major integration centers, such as the mushroom bodies or the central complex, many regions of the cerebrum (the central brain without the optic lobes) of the honey bee are only poorly explored so far, both anatomically and physiologically. To promote studies of these brain regions, we used anti-synapsin immunolabeling and neuronal tract tracings followed by confocal imaging and 3D reconstructions to demarcate all neuropils in the honey bee cerebrum and close this gap at the anatomical level. We demarcated 35 neuropils and 25 fiber tracts in the honey bee cerebrum, most of which have counterparts in the fly (Drosophila melanogaster) and other insect species that have been investigated so far at this level of detail. We discuss the role of cerebral neuropils in multisensory integration in the insect brain, emphasize the importance of this brain atlas for comparative studies, and highlight specific architectural features of the honey bee cerebrum.

Identifiants

pubmed: 37070301
doi: 10.1002/cne.25486
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1163-1183

Informations de copyright

© 2023 The Authors. The Journal of Comparative Neurology published by Wiley Periodicals LLC.

Références

Abel, R., Rybak, J., & Menzel, R. (2001). Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera. The Journal of Comparative Neurology, 437(3), 363-383. https://doi.org/10.1002/cne.1289
Ai, H., & Hagio, H. (2013). Morphological analysis of the primary center receiving spatial information transferred by the waggle dance of honeybees. Journal of Comparative Neurology, 521(11), 2570-2584. https://doi.org/10.1002/cne.23299
Ai, H., Kai, K., Kumaraswamy, A., Ikeno, H., & Wachtler, T. (2017). Interneurons in the honeybee primary auditory center responding to waggle dance-like vibration pulses. The Journal of Neuroscience, 37(44), 10624-10635. https://doi.org/10.1523/JNEUROSCI.0044-17.2017
Ai, H., Nishino, H., & Itoh, T. (2007). Topographic organization of sensory afferents of Johnston's organ in the honeybee brain. The Journal of Comparative Neurology, 502(6), 1030-1046. https://doi.org/10.1002/cne.21341
Aimon, S., Cheng, K. Y., Gjorgjieva, J., & Kadow, G., I, C. (2022). Complex patterns of neuronal activity underpin a global change in brain state during walk in Drosophila. bioRxiv. https://doi.org/10.1101/2022.01.17.476660
Aimon, S., Katsuki, T., Jia, T., Grosenick, L., Broxton, M., Deisseroth, K., Sejnowski, T. J., & Greenspan, R. J. (2019). Fast near-whole-brain imaging in adult Drosophila during responses to stimuli and behavior. PLoS Biology, 17(2), e2006732. https://doi.org/10.1371/journal.pbio.2006732
Aptekar, J. W., Keleş, M. F., Lu, P. M., Zolotova, N. M., & Frye, M A. (2015). Neurons forming optic glomeruli compute figure-ground discriminations in Drosophila. The Journal of Neuroscience, 35(19), 7587-7599. https://doi.org/10.1523/JNEUROSCI.0652-15.2015
Brandt, R., Rohlfing, T., Rybak, J., Krofczik, S., Maye, A., Westerhoff, M., Hege, H.-C., & Menzel, R. (2005). Three-dimensional average-shape atlas of the honeybee brain and its applications. The Journal of Comparative Neurology, 492(1), 1-19. https://doi.org/10.1002/cne.20644
Bressan, J. M. A., Benz, M., Oettler, J., Heinze, J., Hartenstein, V., & Sprecher, S G. (2014). A map of brain neuropils and fiber systems in the ant Cardiocondyla obscurior. Frontiers in Neuroanatomy, 8, 166. https://doi.org/10.3389/fnana.2014.00166
Brill, M. F., Rosenbaum, T., Reus, I., Kleineidam, C. J., Nawrot, M. P., & Rössler, W. (2013). Parallel processing via a dual olfactory pathway in the honeybee. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(6), 2443-2456. https://doi.org/10.1523/JNEUROSCI.4268-12.2013
Couto, A., Lapeyre, B., Thiéry, D., & Sandoz, J.-C. (2016). Olfactory pathway of the hornet Vespa velutina: New insights into the evolution of the hymenopteran antennal lobe. The Journal of Comparative Neurology, 524(11), 2335-2359. https://doi.org/10.1002/cne.23975
Currier, T. A., & Nagel, K. I. (2020). Multisensory control of navigation in the fruit fly. Current Opinion in Neurobiology, 64, 10-16. https://doi.org/10.1016/j.conb.2019.11.017
Dolan, M.-J., Frechter, S., Bates, A. S., Dan, C., Huoviala, P., Roberts, R. J., Schlegel, P., Dhawan, S., Tabano, R., Dionne, H., Christoforou, C., Close, K., Sutcliffe, B., Giuliani, B., Li, F., Costa, M., Ihrke, G., Meissner, G. W., Bock, D. D., … Jefferis, G. S. (2019). Neurogenetic dissection of the Drosophila lateral horn reveals major outputs, diverse behavioural functions, and interactions with the mushroom body. eLife, 8, e43079. https://doi.org/10.7554/eLife.43079
Dujardin, F. (1850). Mémoire sur le système nerveux des insectes. Annales des Sciences Naturelles, 3, 273-381.
Ehmer, B., & Gronenberg, W. (2002). Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). The Journal of Comparative Neurology, 451(4), 362-373. https://doi.org/10.1002/cne.10355
El Jundi, B. (2009). The locust standard brain: A 3D standard of the central complex as a platform for neural network analysis. Frontiers in Systems Neuroscience, 3, 21. https://doi.org/10.3389/neuro.06.021.2009
El Jundi, B., Huetteroth, W., Kurylas, A. E., & Schachtner, J. (2009). Anisometric brain dimorphism revisited: Implementation of a volumetric 3D standard brain in Manduca sexta. Journal of Comparative Neurology, 517(2), 210-225. https://doi.org/10.1002/cne.22150
El Jundi, B., Pfeiffer, K., Heinze, S., & Homberg, U. (2014). Integration of polarization and chromatic cues in the insect sky compass. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 200(6), 575-589. https://doi.org/10.1007/s00359-014-0890-6
El Jundi, B., Warrant, E. J., Pfeiffer, K., & Dacke, M. (2018). Neuroarchitecture of the dung beetle central complex. Journal of Comparative Neurology, 526(16), 2612-2630. https://doi.org/10.1002/cne.24520
Farris, S. M. (2008). Tritocerebral tract input to the insect mushroom bodies. Arthropod Structure & Development, 37(6), 492-503. https://doi.org/10.1016/j.asd.2008.05.005
Frisch, K. V. (1993). The dance language and orientation of bees (L. E. Chadwick, Trans.). s.l. Harvard University Press. https://doi.org/10.4159/harvard.9780674418776
Galizia, C. G, & Rössler, W. (2010). Parallel olfactory systems in insects: Anatomy and function. Annual Review of Entomology, 55, 399-420. https://doi.org/10.1146/annurev-ento-112408-085442
Green, J., Vijayan, V., Mussells Pires, P., Adachi, A., & Maimon, G. (2019). A neural heading estimate is compared with an internal goal to guide oriented navigation. Nature Neuroscience, 22(9), 1460-1468. https://doi.org/10.1038/s41593-019-0444-x
Grob, R., Holland Cunz, O., Grübel, K., Pfeiffer, K., Rössler, W., & Fleischmann, P. N. (2022). Rotation of skylight polarization during learning walks is necessary to trigger neuronal plasticity in Cataglyphis ants. Proceedings. Biological Sciences, 289(1967), 20212499. https://doi.org/10.1098/rspb.2021.2499
Grob, R., Tritscher, C., Grübel, K., Stigloher, C., Groh, C., Fleischmann, P. N., & Rössler, W. (2021). Johnston's organ and its central projections in Cataglyphis desert ants. Journal of Comparative Neurology, 529(8), 2138-2155. https://doi.org/10.1002/cne.25077
Groh, C., Kelber, C., Grübel, K., & Rössler, W. (2014). Density of mushroom body synaptic complexes limits intraspecies brain miniaturization in highly polymorphic leaf-cutting ant workers. Proceedings of the Royal Society B, 281(1785), 20140432. https://doi.org/10.1098/rspb.2014.0432
Groh, C., & Rössler, W. (2011). Comparison of microglomerular structures in the mushroom body calyx of neopteran insects. Arthropod Structure & Development, 40(4), 358-367. https://doi.org/10.1016/j.asd.2010.12.002
Groh, C., & Rössler, W. (2020). Analysis of synaptic microcircuits in the mushroom bodies of the honeybee. Insects, 11(1), 43. https://doi.org/10.3390/insects11010043
Gronenberg, W. (2001). Subdivisions of hymenopteran mushroom body calyces by their afferent supply. The Journal of Comparative Neurology, 435(4), 474-489. https://doi.org/10.1002/cne.1045
Groothuis, J., Pfeiffer, K., el Jundi, B., & Smid, H. M. (2019). The Jewel Wasp Standard Brain: Average shape atlas and morphology of the female Nasonia vitripennis brain. Arthropod Structure & Development, 51, 41-51. https://doi.org/10.1016/j.asd.2019.100878
Habenstein, J., Amini, E., Grübel, K., El Jundi, B., & Rössler, W. (2020). The brain of Cataglyphis ants: Neuronal organization and visual projections. The Journal of Comparative Neurology, 528(18), 3479-3506. https://doi.org/10.1002/cne.24934
Habenstein, J., Schmitt, F., Liessem, S., Ly, A., Trede, D., Wegener, C., Predel, R., Rössler, W., & Neupert, S. (2021). Transcriptomic, peptidomic, and mass spectrometry imaging analysis of the brain in the ant Cataglyphis nodus. Journal of Neurochemistry, 158(2), 391-412. https://doi.org/10.1111/jnc.15346
Habenstein, J., Thamm, M., & Rössler, W. (2021). Neuropeptides as potential modulators of behavioral transitions in the ant Cataglyphis nodus. Journal of Comparative Neurology, 529(12), 3155-3170. https://doi.org/10.1002/cne.25166
von Hadeln, J., Althaus, V., Häger, L., & Homberg, U. (2018). Anatomical organization of the cerebrum of the desert locust Schistocerca gregaria. Cell and Tissue Research, 374(1), 39-62. https://doi.org/10.1007/s00441-018-2844-8
Haupt, S. S. (2007). Central gustatory projections and side-specificity of operant antennal muscle conditioning in the honeybee. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 193(5), 523-535. https://doi.org/10.1007/s00359-007-0208-z
Heinze, S., El Jundi, B., Berg, B. G., Homberg, U., Menzel, R., Pfeiffer, K., Hensgen, R., Zittrell, F., Dacke, M., Warrant, E., Pfuhl, G., Rybak, J., & Tedore, K. (2021). A unified platform to manage, share, and archive morphological and functional data in insect neuroscience. eLife, 10, e65376. https://doi.org/10.7554/eLife.65376
Heinze, S., & Reppert, S. M. (2012). Anatomical basis of sun compass navigation I: The general layout of the monarch butterfly brain. The Journal of Comparative Neurology, 520(8), 1599-1628. https://doi.org/10.1002/cne.23054
Held, M., Berz, A., Hensgen, R., Muenz, T. S., Scholl, C., Rössler, W., Homberg, U., & Pfeiffer, K. (2016). Microglomerular synaptic complexes in the sky-compass network of the honeybee connect parallel pathways from the anterior optic tubercle to the central complex. Frontiers in Behavioral Neuroscience, 10, 186. https://doi.org/10.3389/fnbeh.2016.00186
Hempel De Ibarra, N., Vorobyev, M., & Menzel, R. (2014). Mechanisms, functions and ecology of colour vision in the honeybee. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 200(6), 411-433. https://doi.org/10.1007/s00359-014-0915-1
Hensgen, R., Göthe, J., Jahn, S., Hümmert, S., Schneider, K. L., Takahashi, N., Pegel, U., Gotthardt, S., & Homberg, U. (2021). Organization and neural connections of the lateral complex in the brain of the desert locust. Journal of Comparative Neurology, 529(15), 3533-3560. https://doi.org/10.1002/cne.25209
Hertel, H., & Maronde, U. (1987). Processing of Visual Information in the Honeybee Brain. In R. Menzel & A. Mercer (Eds.), Neurobiology and behavior of honeybees (pp. 141-157). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-71496-2_13
Hofbauer, A., Ebel, T., Waltenspiel, B., Oswald, P., Chen, Y.-C., Halder, P., Biskup, S., Lewandrowski, U., Winkler, C., Sickmann, A., Buchner, S., & Buchner, E. (2009). The Wuerzburg hybridoma library against Drosophila brain. Journal of Neurogenetics, 23(1-2), 78-91. https://doi.org/10.1080/01677060802471627
Homberg, U. (1994). Flight-correlated activity changes in neurons of the lateral accessory lobes in the brain of the locust Schistocerca gregaria. Journal of Comparative Physiology A, 175(5), 175. https://doi.org/10.1007/BF00199481
Homberg, U., Hofer, S., Mappes, M., Vitzthum, H., Pfeiffer, K., Gebhardt, S., Müller, M., & Paech, A. (2004). Neurobiology of polarization vision in the locust Schistocerca gregaria. Acta Biologica Hungarica, 55(1-4), 81-89. https://doi.org/10.1556/ABiol.55.2004.1-4.10
Homberg, U., Heinze, S., Pfeiffer, K., Kinoshita, M., & El Jundi, B. (2011). Central neural coding of sky polarization in insects. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366(1565), 680-687. https://doi.org/10.1098/rstb.2010.0199
Homberg, U., Humberg, T.-H., Seyfarth, J., Bode, K., & Pérez, M. Q. (2018). Gaba immunostaining in the central complex of dicondylian insects. Journal of Comparative Neurology, 526(14), 2301-2318. https://doi.org/10.1002/cne.24497
Huetteroth, W., el Jundi, B., el Jundi, S., & Schachtner, J. (2010). 3D-reconstructions and virtual 4D-visualization to study metamorphic brain development in the sphinx moth Manduca sexta. Frontiers in Systems Neuroscience, 4, 7. https://doi.org/10.3389/fnsys.2010.00007
Hulse, B. K., Haberkern, H., Franconville, R., Turner-Evans, D., Takemura, S.-Y., Wolff, T., Noorman, M., Dreher, M., Dan, C., Parekh, R., Hermundstad, A. M., Rubin, G. M., & Jayaraman, V. (2021). A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. eLife, 10, e66039. https://doi.org/10.7554/eLife.66039
Ilieş, I., Muscedere, M. L., & Traniello, J. F. A. (2015). Neuroanatomical and morphological trait clusters in the ant genus Pheidole: Evidence for modularity and integration in brain structure. Brain, Behavior and Evolution, 85(1), 63-76. https://doi.org/10.1159/000370100
Immonen, E.-V., Dacke, M., Heinze, S., & El Jundi, B. B. (2017). Anatomical organization of the brain of a diurnal and a nocturnal dung beetle. The Journal of Comparative Neurology, 525(8), 1879-1908. https://doi.org/10.1002/cne.24169
Ito, K., Shinomiya, K., Ito, M., Armstrong, J. D., Boyan, G., Hartenstein, V., Harzsch, S., Heisenberg, M., Homberg, U., Jenett, A., Keshishian, H., Restifo, L. L., Rössler, W., Simpson, J. H., Strausfeld, N. J., Strauss, R., & Vosshall, L. B. (2014). A systematic nomenclature for the insect brain. Neuron, 81(4), 755-765. https://doi.org/10.1016/j.neuron.2013.12.017
Kaiser, A., Hensgen, R., Tschirner, K., Beetz, E., Wüstenberg, H., Pfaff, M., Mota, T., & Pfeiffer, K. (2022). A three-dimensional atlas of the honeybee central complex, associated neuropils and peptidergic layers of the central body. Journal of Comparative Neurology, 530(14), 2416-2438. https://doi.org/10.1002/cne.25339
Kamikouchi, A., Inagaki, H K., Effertz, T., Hendrich, O., Fiala, A., Göpfert, M. C., & Ito, K. (2009). The neural basis of Drosophila gravity-sensing and hearing. Nature, 458(7235), 165-171. https://doi.org/10.1038/nature07810
Kenyon, F. C. (1896). The brain of the bee. A preliminary contribution to the morphology of the nervous system of the arthropoda. Journal of Comparative Neurology, 6(3), 133-210. https://doi.org/10.1002/cne.910060302
Kirschner, S., Kleineidam, C. J., Zube, C., Rybak, J., Grünewald, B., & Rössler, W. (2006). Dual olfactory pathway in the honeybee, Apis mellifera. The Journal of Comparative Neurology, 499(6), 933-952. https://doi.org/10.1002/cne.21158
Klagges, B. R. E., Heimbeck, G., Godenschwege, T. A., Hofbauer, A., Pflugfelder, G. O., Reifegerste, R., Reisch, D., Schaupp, M., Buchner, S., & Buchner, E. (1996). Invertebrate synapsins: A single gene codes for several isoforms in Drosophila. The Journal of Neuroscience, 16(10), 3154-3165. https://doi.org/10.1523/JNEUROSCI.16-10-03154.1996
Kumaraswamy, A., Ai, H., Kai, K., Ikeno, H., & Wachtler, T. (2019). Adaptations during maturation in an identified honeybee interneuron responsive to waggle dance vibration signals. eNeuro, 6(5), ENEURO.0454-18.2019. https://doi.org/10.1523/ENEURO.0454-18.2019
Kurylas, A. E., Rohlfing, T., Krofczik, S., Jenett, A., & Homberg, U. (2008). Standardized atlas of the brain of the desert locust, Schistocerca gregaria. Cell and Tissue Research, 333(1), 125-145. https://doi.org/10.1007/s00441-008-0620-x
Lai, J. S.-Y., Lo, S.-J., Dickson, B. J., & Chiang, A.-S. (2012). Auditory circuit in the Drosophila brain. Proceedings of the National Academy of Sciences of the United States of America, 109(7), 2607-2612. https://doi.org/10.1073/pnas.1117307109
Li, F., Lindsey, J. W., Marin, E. C., Otto, N., Dreher, M., Dempsey, G., Stark, I., Bates, A. S., Pleijzier, M. W., Schlegel, P., Nern, A., Takemura, S.-Y., Eckstein, N., Yang, T., Francis, A., Braun, A., Parekh, R., Costa, M., Scheffer, L. K., … Rubin, G. M. (2020). The connectome of the adult Drosophila mushroom body provides insights into function. eLife, 9, e62576. https://doi.org/10.7554/eLife.62576
Maronde, U. (1991). Common projection areas of antennal and visual pathways in the honeybee brain, Apis mellifera. The Journal of Comparative Neurology, 309(3), 328-340. https://doi.org/10.1002/cne.903090304
Menzel, R. (2014). The insect mushroom body, an experience-dependent recoding device. Journal of Physiology-Paris, 108(2-3), 84-95. https://doi.org/10.1016/j.jphysparis.2014.07.004
Menzel, R., & Giurfa, M. (2001). Cognitive architecture of a mini-brain: The honeybee. Trends in Cognitive Sciences, 5(2), 62-71. https://doi.org/10.1016/S1364-6613(00)01601-6
Miyazaki, T., & Ito, K. (2010). Neural architecture of the primary gustatory center of Drosophila melanogaster visualized with GAL4 and LexA enhancer-trap systems. Journal of Comparative Neurology, 518(20), 4147-4181. https://doi.org/10.1002/cne.22433
Mobbs, P. G. (1984). Neural networks in the mushroom bodies of the honeybee. Journal of Insect Physiology, 30(1), 43-58. https://doi.org/10.1016/0022-1910(84)90107-0
Montgomery, S. H., & Merrill, R. M. (2017). Divergence in brain composition during the early stages of ecological specialization in Heliconius butterflies. Journal of Evolutionary Biology, 30(3), 571-582. https://doi.org/10.1111/jeb.13027
Mota, T., Gronenberg, W., Giurfa, M., & Sandoz, J.-C. (2013). Chromatic processing in the anterior optic tubercle of the honey bee brain. The Journal of Neuroscience, 33(1), 4-16. https://doi.org/10.1523/JNEUROSCI.1412-12.2013
Mota, T., Kreissl, S., Carrasco Durán, A., Lefer, D., Galizia, G., & Giurfa, M. (2016). Synaptic organization of microglomerular clusters in the lateral and medial bulbs of the honeybee brain. Frontiers in Neuroanatomy, 10, 103. https://doi.org/10.3389/fnana.2016.00103
Mota, T., Yamagata, N., Giurfa, M., Gronenberg, W., & Sandoz, J.-C. (2011). Neural organization and visual processing in the anterior optic tubercle of the honeybee brain. The Journal of Neuroscience, 31(32), 11443-11456. https://doi.org/10.1523/JNEUROSCI.0995-11.2011
Namiki, S., Dickinson, M. H., Wong, A. M., Korff, W., & Card, G. M. (2018). The functional organization of descending sensory-motor pathways in Drosophila. eLife, 7, e34272. https://doi.org/10.7554/eLife.34272
Namiki, S., & Kanzaki, R. (2016). Comparative neuroanatomy of the lateral accessory lobe in the insect brain. Frontiers in Physiology, 7, 244. https://doi.org/10.3389/fphys.2016.00244
Namiki, S., Wada, S., & Kanzaki, R. (2018). Descending neurons from the lateral accessory lobe and posterior slope in the brain of the silkmoth Bombyx mori. Scientific Reports, 8(1), 9663. https://doi.org/10.1038/s41598-018-27954-5
Okubo, T. S., Patella, P., D'alessandro, I., & Wilson, R. I. (2020). A neural network for wind-guided compass navigation. Neuron, 107(5), 924-940.e18. https://doi.org/10.1016/j.neuron.2020.06.022
Ott, S. R. (2008). Confocal microscopy in large insect brains: Zinc-formaldehyde fixation improves synapsin immunostaining and preservation of morphology in whole-mounts. Journal of Neuroscience Methods, 172(2), 220-230. https://doi.org/10.1016/j.jneumeth.2008.04.031
Pasch, E., Muenz, T. S., & Rössler, W. (2011). Camkii is differentially localized in synaptic regions of Kenyon cells within the mushroom bodies of the honeybee brain. Journal of Comparative Neurology, 519(18), 3700-3712. https://doi.org/10.1002/cne.22683
Pfeiffer, K. (2022). The neuronal building blocks of the navigational toolkit in the central complex of insects. Current Opinion in Insect Science, 55, 100972. https://doi.org/10.1016/j.cois.2022.100972
Pfeiffer, K., & Homberg, U. (2014). Organization and functional roles of the central complex in the insect brain. Annual Review of Entomology, 59, 165-184. https://doi.org/10.1146/annurev-ento-011613-162031
Pfeiffer, K., & Kinoshita, M. (2012). Segregation of visual inputs from different regions of the compound eye in two parallel pathways through the anterior optic tubercle of the bumblebee (Bombus ignitus). The Journal of Comparative Neurology, 520(2), Spc1-Spc1. https://doi.org/10.1002/cne.23016
Rein, K., Zöckler, M., Mader, M. T., Grübel, C., & Heisenberg, M. (2002). The Drosophila standard brain. Current Biology, 12(3), 227-231. https://doi.org/10.1016/S0960-9822(02)00656-5
Ribi, W. (1975). The first optic ganglion of the bee. I. Correlation between visual cell types and their terminals in the lamina and medulla. Cell and Tissue Research, 165(1), 103-111. https://doi.org/10.1007/BF00222803
Rössler, W., & Brill, M. F. (2013). Parallel processing in the honeybee olfactory pathway: Structure, function, and evolution. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 199(11), 981-996. https://doi.org/10.1007/s00359-013-0821-y
Rother, L., Kraft, N., Smith, D. B., El Jundi, B., Gill, R. J., & Pfeiffer, K. (2021). A micro-CT-based standard brain atlas of the bumblebee. Cell and Tissue Research, 386(1), 29-45. https://doi.org/10.1007/s00441-021-03482-z
Roussel, E., Carcaud, J., Combe, M., Giurfa, M., & Sandoz, J.-C. (2014). Olfactory coding in the honeybee lateral horn. Current Biology: CB, 24(5), 561-567. https://doi.org/10.1016/j.cub.2014.01.063
Rybak, J. (2010). The digital bee brain: Integrating and managing neurons in a common 3D reference system. Frontiers in Systems Neuroscience, 4, 30. https://doi.org/10.3389/fnsys.2010.00030
Rybak, J., & Menzel, R. (1993). Anatomy of the mushroom bodies in the honey bee brain: The neuronal connections of the alpha-lobe. The Journal of Comparative Neurology, 334, 444-465.
Sayre, M. E., Templin, R., Chavez, J., Kempenaers, J., & Heinze, S. (2021). A projectome of the bumblebee central complex. eLife, 10, e68911. https://doi.org/10.7554/eLife.68911
Scheffer, L. K., Xu, C. S., Januszewski, M., Lu, Z., Takemura, S.-Y., Hayworth, K. J., Huang, G. B., Shinomiya, K., Maitlin-Shepard, J., Berg, S., Clements, J., Hubbard, P. M., Katz, W. T., Umayam, L., Zhao, T., Ackerman, D., Blakely, T., Bogovic, J., Dolafi, T., … Plaza, S. M. (2020). A connectome and analysis of the adult Drosophila central brain. eLife, 9, 57443. https://doi.org/10.7554/eLife.57443
Schmitt, F., Stieb, S. M., Wehner, R., & Rössler, W. (2016). Experience-related reorganization of giant synapses in the lateral complex: Potential role in plasticity of the sky-compass pathway in the desert ant Cataglyphis fortis. Developmental Neurobiology, 76(4), 390-404. https://doi.org/10.1002/dneu.22322
Seelig, J. D., & Jayaraman, V. (2015). Neural dynamics for landmark orientation and angular path integration. Nature, 521(7551), 186-191. https://doi.org/10.1038/nature14446
Sommerlandt, F. M. J., Brockmann, A., Rössler, W., & Spaethe, J. (2019). Immediate early genes in social insects: A tool to identify brain regions involved in complex behaviors and molecular processes underlying neuroplasticity. Cellular and Molecular Life Sciences: CMLS, 76(4), 637-651. https://doi.org/10.1007/s00018-018-2948-z
Sommerlandt, F. M. J., Rössler, W., & Spaethe, J. (2017). Impact of light and alarm pheromone on immediate early gene expression in the European honeybee, Apis mellifera. Entomological Science, 20(1), 122-126. https://doi.org/10.1111/ens.12234
Stone, T., Webb, B., Adden, A., Weddig, N. B., Honkanen, A., Templin, R., Wcislo, W., Scimeca, L., Warrant, E., & Heinze, S. (2017). An anatomically constrained model for path integration in the bee brain. Current Biology: CB, 27(20), 3069-3085.e11. https://doi.org/10.1016/j.cub.2017.08.052
Strausfeld, N. J. (2002). Organization of the honey bee mushroom body: representation of the calyx within the vertical and gamma lobes. Journal of Comparative Neurology, 450(1), 4-33. https://doi.org/10.1002/cne.10285
Strausfeld, N. J., Sinakevitch, I., & Okamura, J.-Y. (2007). Organization of local interneurons in optic glomeruli of the dipterous visual system and comparisons with the antennal lobes. Developmental Neurobiology, 67(10), 1267-1288. https://doi.org/10.1002/dneu.20396
Strube-Bloss, M. F., Herrera-Valdez, M. A., & Smith, B. H. (2012). Ensemble response in mushroom body output neurons of the honey bee outpaces spatiotemporal odor processing two synapses earlier in the antennal lobe. PLoS One, 7(11), e50322. https://doi.org/10.1371/journal.pone.0050322
Strube-Bloss, M. F., & Rössler, W. (2018). Multimodal integration and stimulus categorization in putative mushroom body output neurons of the honeybee. Royal Society Open Science, 5(2), 171785. https://doi.org/10.1098/rsos.171785
Vowles, D. M. (1955). The structure and connexions of the corpora pedunculata in bees and ants. Journal of Cell Science, s3-96, 239-255.
Yilmaz, A., Lindenberg, A., Albert, S., Grübel, K., Spaethe, J., Rössler, W., & Groh, C. (2016). Age-related and light-induced plasticity in opsin gene expression and in primary and secondary visual centers of the nectar-feeding ant Camponotus rufipes. Developmental Neurobiology, 76(9), 1041-1057. https://doi.org/10.1002/dneu.22374
Zeller, M., Held, M., Bender, J., Berz, A., Heinloth, T., Hellfritz, T., & Pfeiffer, K. (2015). Transmedulla neurons in the sky compass network of the honeybee (Apis mellifera) are a possible site of circadian input. PLoS One, 10(12), e0143244. https://doi.org/10.1371/journal.pone.0143244
Zwaka, H., Münch, D., Manz, G., Menzel, R., & Rybak, J. (2016). The circuitry of olfactory projection neurons in the brain of the honeybee, Apis mellifera. Frontiers in Neuroanatomy, 10, 90. https://doi.org/10.3389/fnana.2016.00090

Auteurs

Jens Habenstein (J)

Biocenter, Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Würzburg, Germany.

Kornelia Grübel (K)

Biocenter, Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Würzburg, Germany.

Keram Pfeiffer (K)

Biocenter, Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Würzburg, Germany.

Wolfgang Rössler (W)

Biocenter, Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Würzburg, Germany.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH