Optical coherence tomography angiography in neuro-ophthalmology.
Journal
Current opinion in ophthalmology
ISSN: 1531-7021
Titre abrégé: Curr Opin Ophthalmol
Pays: United States
ID NLM: 9011108
Informations de publication
Date de publication:
01 Jul 2023
01 Jul 2023
Historique:
medline:
1
6
2023
pubmed:
19
4
2023
entrez:
18
4
2023
Statut:
ppublish
Résumé
Optical coherence tomography angiography (OCTA) is a novel, noninvasive imaging technique, which provides depth resolved visualization of microvasculature of the retina and choroid. Although OCTA has been widely used for the evaluation of a number of retinal diseases, its use in the field of neuro-ophthalmology has been less studied. In this review, we provide an update on the utility of OCTA in neuro-ophthalmic conditions. Peripapillary and macular microvasculature analyses have indicated that OCTA can be a promising tool for early detection of a number of neuro-ophthalmic diseases, differential diagnosis, and monitoring of disease progression. Recent studies have demonstrated that structural and functional impairment can develop at early stages in some conditions such as in multiple sclerosis and Alzheimer's disease even in the absence of overt clinical symptoms. Furthermore, this dye-less technique can be a valuable adjunct tool in the detection of complications commonly seen in some congenital entities such optic disc drusen. Since its introduction, OCTA has emerged as an important imaging approach shedding light on unrevealed pathophysiological mechanisms of several ocular diseases. The use of OCTA as a biomarker in the field of neuro-ophthalmology has recently gained considerable attention with studies supporting its role in clinical setting while larger studies are warranted for correlating these findings with traditional diagnostic procedures and clinical features and outcomes.
Identifiants
pubmed: 37070535
doi: 10.1097/ICU.0000000000000955
pii: 00055735-202307000-00013
doi:
Types de publication
Review
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
354-360Informations de copyright
Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.
Références
Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2000; 2:9.
Kashani AH, Chen C-L, Gahm JK, et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res 2017; 60:66–100.
Urfalioglu S, Ozdemir G, Guler M, Duman GG. The evaluation of patients with optic disc edema: a retrospective study. Northern Clin Istanbul 2021; 8:280.
Fard MA, Sahraiyan A, Jalili J, et al. Optical coherence tomography angiography in papilledema compared with pseudopapilledema. Investig Ophthalmol Vis Sci 2019; 60:168.
Bilen FT, Atilla H. Peripapillary vessel density measured by optical coherence tomography angiography in idiopathic intracranial hypertension. J Neuroophthalmol 2019; 39:319–323.
Sharma S, Hashmi MF, Kumar A. Intracranial hypertension. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.
Rougier MB, le Goff M, Korobelnik JF. Optical coherence tomography angiography at the acute phase of optic disc edema. Eye and Vision 2018; 5. Available at: /pmc/articles/PMC6015448/. [Accessed 30 July 2022].
Chonsui M, le Goff M, Korobelnik JF, Rougier MB. Quantitative analysis of radial peripapillary capillary network in patients with papilledema compared with healthy subjects using optical coherence tomography angiography. J Neuroophthalmol 2022; 42:E109–E115.
Rodriguez Torres Y, Lee P, Mihlstin M, Tomsak RL. Correlation between optic disc peripapillary capillary network and papilledema grading in patients with idiopathic intracranial hypertension: a study of optical coherence tomography angiography. J Neuroophthalmol 2021; 41:48–53.
Ariello LE, Guilherme L, Mello M, et al. Chorioretinal abnormalities in idiopathic intracranial hypertension: case reports. Int J Retin Vitreous 2022; 8:1–6.
Myhr KM. Diagnosis and treatment of multiple sclerosis. Acta Neurol Scand Suppl 2008; 188:12–21.
Farci R, Carta A, Cocco E, et al. Optical coherence tomography angiography in multiple sclerosis: a cross-sectional study. PLoS ONE 2020; 15:e0236090.
Spain RI, Liu L, Zhang X, et al. Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis. Br J Ophthalmol 2018; 102:520.
Cordon B, Vilades E, Orduna E, et al. Angiography with optical coherence tomography as a biomarker in multiple sclerosis. PLoS One 2020; 15:e0243236.
Khader S, Nawar A, Ghali A, Ghoneim A. Evaluation of optical coherence tomography angiography findings in patients with multiple sclerosis. Indian J Ophthalmol 2021; 69:1457–1463.
Berry S, Lin W, Sadaka v, Lee AG A. Nonarteritic anterior ischemic optic neuropathy: cause, effect, and management. Eye Brain 2017; 9:23.
Sönmez HK, Arda H, Sevim DG. Evaluation of optic disc perfusion with optical coherence tomography angiography in acute nonarteritic anterior ischemic optic neuropathy. Turk J Ophthalmol 2022; 52:30.
Su Y, Zhang S, Zhang G, et al. Quantification of peripapillary vessel density in nonarteritic anterior ischemic optic neuropathy patients with optical coherence tomography angiography. Quant Imaging Med Surg 2022; 12:1549–1557.
Moon Y, Song MK, Shin JW, Lim HT. Optical coherence tomography angiography characteristics and predictors of visual outcomes in patients with acute and chronic nonarteritic anterior ischemic optic neuropathy. J Neuroophthalmol 2021; 41:e440–e450.
Hayreh SS. Ischemic optic neuropathy. Prog Retin Eye Res 2009; 28:34–62.
Shichinohe N, Shinmei Y, Nitta T, et al. Arteritic anterior ischemic optic neuropathy with positive myeloperoxidase antineutrophil cytoplasmic antibody. Jpn J Ophthalmol 2010; 54:344–348.
Balducci N, Morara M, Veronese C, et al. Optical coherence tomography angiography in acute arteritic and nonarteritic anterior ischemic optic neuropathy. Graefes Arch Clin Exp Ophthalmol 2017; 255:2255–2261.
Pierro L, Arrigo A, Aragona E, et al. Vessel density and vessel tortuosity quantitative analysis of arteritic and nonarteritic anterior ischemic optic neuropathies: an optical coherence tomography angiography study. J Clin Med 2020; 9:1094.
Mahdjoubi A, Haouas M, Caliot J, et al. Optical coherence tomography angiography of macula in chronic anterior ischaemic optic neuropathy associated with giant cell arteritis. Neuroophthalmology 2019; 43:192.
Chen JJ, AbouChehade JE, Iezzi R, et al. Optical coherence angiographic demonstration of retinal changes from chronic optic neuropathies. Neuroophthalmology 2017; 41:76.
Anon. Leber hereditary optic neuropathy – GeneReviews ® – NCBI Bookshelf. Available at: https://www.ncbi.nlm.nih.gov/books/NBK1174/ . [Accessed 23 July 2022].
Matsuzaki M, Hirami Y, Uyama H, Kurimoto Y. Optical coherence tomography angiography changes in radial peripapillary capillaries in Leber hereditary optic neuropathy. Am J Ophthalmol Case Rep 2018; 9:51.
de Rojas JO, Rasool N, Chen RWS, et al. Optical coherence tomography angiography in Leber hereditary optic neuropathy. Neurology 2016; 87:2065–2066.
Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF. Inherited mitochondrial optic neuropathies. J Med Genet 2009; 46:145.
Takayama K, Ito Y, Kaneko H, et al. Optical coherence tomography angiography in leber hereditary optic neuropathy. Acta Ophthalmol 2017; 95:e344–e345.
Douglas VP, Douglas KAA, Miller JB, Cestari DM. Juxtapapillary choroidal neovascular membrane as a complication of optic disc drusen: multimodal imaging with swept source-optical coherence tomography and optical coherence tomography angiography. J Neuroophthalmol 2022; 42:E430–E433.
Engelke H, Shajari M, Riedel J, et al. OCT angiography in optic disc drusen: comparison with structural and functional parameters. Br J Ophthalmol 2020; 104:1109–1113.
Yan Y, Zhou X, Chu Z, et al. Topographic quadrant analysis of peripapillary superficial microvasculature in optic disc drusen. Front Neurol 2021; 12:593.
Delettre C, Lenaers G, Pelloquin L, et al. OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease. Mol Genet Metab 2002; 75:97–107.
Lenaers G, Hamel C, Delettre C, et al. Dominant optic atrophy. Orphanet J Rare Dis 2012; 7:46.
Cesareo M, Giannini C, di Marino M, et al. Optical coherence tomography angiography in the multimodal assessment of the retinal posterior pole in autosomal dominant optic atrophy. Acta Ophthalmol 2022; 100:e798–e806.
Malmqvist L, Bursztyn L, Costello F, et al. Peripapillary hyperreflective ovoid mass-like structures: is it optic disc drusen or not?: Response. J Neuroophthalmol 2018; 38:568–570.
Xie X, Liu T, Wang W, et al. Clinical and multi-mode imaging features of eyes with peripapillary hyperreflective ovoid mass-like structures. Front Med (Lausanne) 2022; 9:796667.
Borrelli E, Barboni P, Battista M, et al. Peripapillary hyperreflective ovoid mass-like structures (PHOMS): OCTA may reveal new findings. Eye (Lond) 2021; 35:528–531.
Gracia F, Ramírez D, Parajeles-Vindas A, et al. Neuromyelitis optica spectrum disorder in Central America and the Caribbean: a multinational clinical characterization study. Neurol Int 2022; 14:284–293.
Takeshita Y, Obermeier B, Cotleur AC, et al. Effects of neuromyelitis optica–IgG at the blood–brain barrier in vitro. Neurol Neuroimmunol Neuroinflamm 2017; 4:e311.
Wei R, Xie J, Wu H, et al. Superficial macula capillary complexity changes are associated with disability in neuromyelitis optica spectrum disorders. Front Neurol 2021; 12:724946.
Lang Y, Kwapong WR, Kong L, et al. Sparser macula microvasculature in neuromyelitis optica spectrum disorder occurs independently of optic neuritis. Mult Scler Relat Disord 2022; 58:103470.
Chen Y, Shi C, Zhou L, et al. The detection of retina microvascular density in subclinical aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorders. Front Neurol 2020; 11:35.
Vegunta S, Patel BC. Optic nerve coloboma. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.
Cennamo G, Rossi C, Ruggiero P, et al. Study of the radial peripapillary capillary network in congenital optic disc anomalies with optical coherence tomography angiography. Am J Ophthalmol 2017; 176:1–8.
el Hamichi S, Acón D, Murray TG, Berrocal AM. Multimodal imaging of large optic disc coloboma: a report of three cases. Case Rep Ophthalmo 2020; 11:612.
Wiethe T. Ein Fall von angeborener Deformitat der Sehnervenpapille. Arch Augenheilkd 1882; 11:14–19.
Jiang S, Turco B, Choudhry N. Vascular perfusion density mapping using optical coherence tomography angiography comparing normal and optic disk pit eyes. Retin Cases Brief Rep 2022; 16:126–132.
Weiler DL. Thyroid eye disease: a review. Clin Exp Optom 2017; 100:20–25.
Ye L, Zhou S-S, Yang W-L, et al. Retinal microvasculature alteration in active thyroid-associated ophthalmopathy. Endocr Pract 2018; 24:658–667.
del Noce C, Roda M, Valsecchi N, et al. Evaluation of peripapillary vascular flow in patients with thyroid-associated ophthalmopathy (TAO) by OCT angiography. Graefes Arch Clin Exp Ophthalmol 2022; 260:2711–2716.
Dave TV, Laghmisetty S, Krishnamurthy G, et al. Retinal vascularity, nerve fiber, and ganglion cell layer thickness in thyroid eye disease on optical coherence tomography angiography. Orbit 2022; 41:170–177.
Pinhas A, Romo JSA, Lynch G, et al. A pilot study of subclinical non-capillary peripapillary perfusion changes in thyroid-related orbitopathy detected using optical coherence tomography angiography. Clin Ophthalmol 2022; 16:867–875.
Douglas VP, Douglas KAA, Cestari DM. Ophthalmic manifestations of dementing disorders. Curr Opin Ophthalmol 2021; 32:515–520.
Ma JP, Robbins CB, Lee JM, et al. Longitudinal analysis of the retina and choroid in cognitively normal individuals at higher genetic risk of Alzheimer disease. Ophthalmol Retina 2022; 6:607–619.
Robbins CB, Thompson AC, Bhullar PK, et al. Characterization of retinal microvascular and choroidal structural changes in Parkinson disease. JAMA Ophthalmol 2021; 139:182–188.