Automatic 3-D spine curve measurement in freehand ultrasound via structure-aware reinforcement learning spinous process localization.


Journal

Ultrasonics
ISSN: 1874-9968
Titre abrégé: Ultrasonics
Pays: Netherlands
ID NLM: 0050452

Informations de publication

Date de publication:
Jul 2023
Historique:
received: 23 12 2022
revised: 18 03 2023
accepted: 10 04 2023
medline: 29 5 2023
pubmed: 18 4 2023
entrez: 18 04 2023
Statut: ppublish

Résumé

Freehand 3-D ultrasound systems have been advanced in scoliosis assessment to avoid radiation hazards, especially for teenagers. This novel 3-D imaging method also makes it possible to evaluate the spine curvature automatically from the corresponding 3-D projection images. However, most approaches neglect the three-dimensional spine deformity by only using the rendering images, thus limiting their usage in clinical applications. In this study, we proposed a structure-aware localization model to directly identify the spinous processes for automatic 3-D spine curve measurement using the images acquired with freehand 3-D ultrasound imaging. The pivot is to leverage a novel reinforcement learning (RL) framework to localize the landmarks, which adopts a multi-scale agent to boost structure representation with positional information. We also introduced a structure similarity prediction mechanism to perceive the targets with apparent spinous process structures. Finally, a two-fold filtering strategy was proposed to screen the detected spinous processes landmarks iteratively, followed by a three-dimensional spine curve fitting for the spine curvature assessments. We evaluated the proposed model on 3-D ultrasound images among subjects with different scoliotic angles. The results showed that the mean localization accuracy of the proposed landmark localization algorithm was 5.95 pixels. Also, the curvature angles on the coronal plane obtained by the new method had a high linear correlation with those by manual measurement (R = 0.86, p < 0.001). These results demonstrated the potential of our proposed method for facilitating the 3-D assessment of scoliosis, especially for 3-D spine deformity assessment.

Identifiants

pubmed: 37071944
pii: S0041-624X(23)00088-4
doi: 10.1016/j.ultras.2023.107012
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

107012

Informations de copyright

Copyright © 2023 Elsevier B.V. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Qi-Yong Ran (QY)

The School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Jiangsu Key Laboratory of Biomaterials and Devices, Southeast University, Nanjing, China.

Juzheng Miao (J)

The School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China.

Si-Ping Zhou (SP)

The School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Jiangsu Key Laboratory of Biomaterials and Devices, Southeast University, Nanjing, China.

Shi-Hao Hua (SH)

The School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Jiangsu Key Laboratory of Biomaterials and Devices, Southeast University, Nanjing, China.

Si-Yuan He (SY)

The School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Jiangsu Key Laboratory of Biomaterials and Devices, Southeast University, Nanjing, China.

Ping Zhou (P)

The School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.

Hong-Xing Wang (HX)

The Department of Rehabilitation Medicine, Zhongda Hospital, Southeast University, Nanjing, China.

Yong-Ping Zheng (YP)

The Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.

Guang-Quan Zhou (GQ)

The School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Jiangsu Key Laboratory of Biomaterials and Devices, Southeast University, Nanjing, China. Electronic address: guangquan.zhou@seu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH