Matrix-independent boron isotope analysis of silicate and carbonate reference materials by ultraviolet femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry with application to the cold-water coral Desmophyllum dianthus.
Journal
Rapid communications in mass spectrometry : RCM
ISSN: 1097-0231
Titre abrégé: Rapid Commun Mass Spectrom
Pays: England
ID NLM: 8802365
Informations de publication
Date de publication:
15 Jul 2023
15 Jul 2023
Historique:
revised:
10
03
2023
received:
12
12
2022
accepted:
11
03
2023
medline:
19
4
2023
pubmed:
19
4
2023
entrez:
18
4
2023
Statut:
ppublish
Résumé
Boron isotopes are a powerful tool for pH reconstruction in marine carbonates and as a tracer for fluid-mineral interaction in geochemistry. Microanalytical approaches based on laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) often suffer from effects induced by the sample matrix. In this study, we investigate matrix-independent analyses of B isotopic ratios and apply this technique to cold-water corals. We employ a customized 193 nm femtosecond laser ablation system (Solstice, Spectra-Physics) coupled to a MC-ICP-MS system (Nu Plasma II, Nu Instruments) equipped with electron multipliers for in situ measurements of B isotopic ratios ( We obtained accurate B isotopic ratios with a reproducibility of ±0.9‰ (2 SD) for various reference materials including silicate glasses (GOR132-G, StHs6/80-G, ATHO-G and NIST SRM 612), clay (IAEA-B-8) and carbonate (JCp-1) using the silicate glass NIST SRM 610 as calibration standard, which shows that neither laser-induced nor ICP-related matrix effects are detectable. The application to cold-water corals (Desmophyllum dianthus) reveals minor intra-skeleton variations in δ Our instrumental set-up provides accurate and precise B isotopic ratios independently of the sample matrix at the micrometric scale. This approach opens a wide field of application in geochemistry, including pH reconstruction in biogenic carbonates and deciphering processes related to fluid-mineral interaction.
Substances chimiques
Boron
N9E3X5056Q
Isotopes
0
Carbonates
0
Silicates
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e9508Subventions
Organisme : AWI Strategy Fund
ID : Project DACCOR
Organisme : Bundesministerium für Bildung und Forschung
ID : 01DN15024
Organisme : Bundesministerium für Bildung und Forschung
ID : 20140041
Informations de copyright
© 2023 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd.
Références
Marschall H, Foster G. Boron Isotopes - The Fifth Element. Springer International Publishing AG; 2018. doi:10.1007/978-3-319-64666-4
Anagnostou E, John EH, Edgar KM, et al. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature. 2016;533(7603):380-384. doi:10.1038/nature17423
Fietzke J, Ragazzola F, Halfar J, et al. Century-scale trends and seasonality in pH and temperature for shallow zones of the Bering Sea. Proc Natl Acad Sci USA. 2015;112(10):2960-2965. doi:10.1073/pnas.1419216112
Foster GL. Seawater pH, pCO2 and [CO32−] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic forminifera. Earth Planet Sci Lett. 2008;271(1-4):254-266. doi:10.1016/j.epsl.2008.04.015
Hoenisch B, Hemming NG, Archer D, Siddall M, McManus JF. Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science. 2009;324(5934):1551-1554. doi:10.1126/science.1171477
Jurikova H, Liebetrau V, Raddatz J, et al. Boron isotope composition of the cold-water coral Lophelia pertusa along the Norwegian margin: Zooming into a potential pH-proxy by combining bulk and high-resolution approaches. Chem Geol. 2019;513:143-152. doi:10.1016/j.chemgeo.2019.01.005
Rae JWB, Sarnthein M, Foster GL, Ridgwell A, Grootes PM, Elliott T. Deep water formation in the North Pacific and deglacial CO2 rise. Paleoceanography. 2014;29(6):645-667. doi:10.1002/2013PA002570
Gutjahr M, Bordier L, Douville E, et al. Sub-permil interlaboratory consistency for solution-based boron isotope analyses on marine carbonates. Geostand Geoanal Res. 2021;45(1):59-75. doi:10.1111/ggr.12364
Stewart JA, Christopher SJ, Kucklick JR, et al. NIST RM 8301 boron isotopes in marine carbonate (simulated coral and foraminifera solutions): Inter-laboratory δ11B and trace element ratio value assignment. Geostand Geoanal Res. 2021;45(1):77-96. doi:10.1111/ggr.12363
Fietzke J, Wall M. Distinct fine-scale variations in calcification control revealed by high-resolution 2D boron laser images in the cold-water coral Lophelia pertusa. Sci Adv. 2022;8(11):eabj4172.
Raitzsch M, Rollion-Bard C, Horn I, et al. Single-shell δ11B analysis of Cibicidoides wuellerstorfi using femtosecond laser ablation MC-ICP-MS and secondary ion mass spectrometry. Biogeosciences. 2020;17(21):5365-5375. doi:10.5194/bg-17-5365-2020
Evans D, Gerdes A, Coenen D, Marschall HR, Müller W. Accurate correction for the matrix interference on laser ablation MC-ICP-MS boron isotope measurements in CaCO3 and silicate matrices. J Anal At Spectrom. 2021;36(8):1607-1617. doi:10.1039/D1JA00073J
Fietzke J, Heinemann A, Taubner I, Boehm F, Erez J, Eisenhauer A. Boron isotope ratio determination in carbonates via LA-MC-ICP-MS using soda-lime glass standards as reference material. J Anal At Spectrom. 2010;25(12):1953-1957. doi:10.1039/c0ja00036a
Kaczmarek K, Horn I, Nehrke G, Bijma J. Simultaneous determination of delta B-11 and B/Ca ratio in marine biogenic carbonates at nanogram level. Chem Geol. 2015;392:32-42. doi:10.1016/j.chemgeo.2014.11.011
Kasemann SA, Schmidt DN, Bijma J, Foster GL. In situ boron isotope analysis in marine carbonates and its application for foraminifera and palaeo-pH. Chem Geol. 2009;260(1-2):138-147. doi:10.1016/j.chemgeo.2008.12.015
Míková J, Košler J, Wiedenbeck M. Matrix effects during laser ablation MC-ICP-MS analysis of boron isotopes in tourmaline. J Anal At Spectrom. 2014;29(5):903-914. doi:10.1039/c3ja50241d
Rollion-Bard C, Chaussidon M, France-Lanord C. Biological control of internal pH in scleractinian corals: Implications on paleo-pH and paleo-temperature reconstructions. C R Geosci. 2011;343(6):397-405. doi:10.1016/j.crte.2011.05.003
Sadekov A, Lloyd NS, Misra S, Trotter J, D'Olivo J, McCulloch M. Accurate and precise microscale measurements of boron isotope ratios in calcium carbonates using laser ablation multicollector-ICPMS. J Anal At Spectrom. 2019;34(3):550-560. doi:10.1039/c8ja00444g
Fernández B, Claverie F, Pécheyran C, Donard OF. Direct analysis of solid samples by fs-LA-ICP-MS. TrAC Trends Anal Chem. 2007;26(10):951-966. doi:10.1016/j.trac.2007.08.008
Garcia CC, Lindner H, Niemax K. Laser ablation inductively coupled plasma mass spectrometry - Current shortcomings, practical suggestions for improving performance, and experiments to guide future development. J Anal At Spectrom. 2009;24(1):14-26. doi:10.1039/B813124B
Horn I, von Blanckenburg F. Investigation on elemental and isotopic fractionation during 196 nm femtosecond laser ablation multiple collector inductively coupled plasma mass spectrometry. Spectrochim Acta B. 2007;62(4):410-422. doi:10.1016/j.sab.2007.03.034
Jochum KP, Stoll B, Weis U, Jacob DE, Mertz-Kraus R, Andreae MO. Non-matrix-matched calibration for the multi-element analysis of geological and environmental samples using 200 nm femtosecond LA-ICP-MS: A comparison with nanosecond lasers. Geostand Geoanal Res. 2014;38(3):265-292. doi:10.1111/j.1751-908X.2014.12028.x
Kimura JI, Chang Q, Ishikawa T, Tsujimori T. Influence of laser parameters on isotope fractionation and optimisation of lithium and boron isotope ratio measurements using laser ablation-multiple Faraday collector-inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2016;31(11):2305-2320. doi:10.1039/c6ja00283h
Fietzke J, Frische M. Experimental evaluation of elemental behavior during LA-ICP-MS: Influences of plasma conditions and limits of plasma robustness. J Anal At Spectrom. 2016;31(1):234-244. doi:10.1039/c5ja00253b
Dishon G, Fisch J, Horn I, et al. A novel paleo-bleaching proxy using boron isotopes and high-resolution laser ablation to reconstruct coral bleaching events. Biosciences. 2015;12(19):5677-5687. doi:10.5194/bg-12-5677-2015
Standish CD, Chalk TB, Babila TL, Milton JA, Palmer MR, Foster GL. The effect of matrix interferences on in situ boron isotope analysis by laser ablation multi-collector inductively coupled plasma mass spectrometry. Rapid Commun Mass Spectrom. 2019;33(10):959-968. doi:10.1002/rcm.8432
Thil F, Blamart D, Assailly C, et al. Development of laser ablation multi-collector inductively coupled plasma mass spectrometry for boron isotopic measurement in marine biocarbonates: New improvements and application to a modern Porites coral. Rapid Commun Mass Spectrom. 2016;30(3):359-371. doi:10.1002/rcm.7448
Cheng L, Zhang C, Liu X, et al. Significant boron isotopic fractionation in the magmatic evolution of Himalayan leucogranite recorded in multiple generations of tourmaline. Chem Geol. 2021;571:120194. doi:10.1016/j.chemgeo.2021.120194
Devulder V, Gerdes A, Vanhaecke F, Degryse P. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry. Spectrochim Acta B. 2015;105(SI):116-120. doi:10.1016/j.sab.2014.08.038
le Roux P, Shirey S, Benton L, Hauri E, Mock T. In situ, multiple-multiplier, laser ablation ICP-MS measurement of boron isotopic composition (delta B-11) at the nanogram level. Chem Geol. 2004;203(1-2):123-138. doi:10.1016/j.chemgeo.2003.09.006
Lin L, Hu Z, Yang L, et al. Determination of boron isotope compositions of geological materials by laser ablation MC-ICP-MS using newly designed high sensitivity skimmer and sample cones. Chem Geol. 2014;386:22-30. doi:10.1016/j.chemgeo.2014.08.001
Martin C, Ponzevera E, Harlow G. In situ lithium and boron isotope determinations in mica, pyroxene, and serpentine by LA-MC-ICP-MS. Chem Geol. 2015;412:107-116. doi:10.1016/j.chemgeo.2015.07.022
Tiepolo M, Bouman C, Vannucci R, Schwieters J. Laser ablation multicollector ICPMS determination of delta B-11 in geological samples. Appl Geochem. 2006;21(5):788-801. doi:10.1016/j.apgeochem.2006.02.014
Steinhoefel G, Breuer J, von Blanckenburg F, Horn I, Sommer M. The dynamics of Si cycling during weathering in two small catchments in the Black Forest (Germany) traced by Si isotopes. Chem Geol. 2017;466:389-402. doi:10.1016/j.chemgeo.2017.06.026
Steinhoefel G, Breuer J, von Blanckenburg F, Horn I, Kaczorek D, Sommer M. Micrometer silicon isotope diagnostics of soils by UV femtosecond laser ablation. Chem Geol. 2011;286(3-4):280-289. doi:10.1016/j.chemgeo.2011.05.013
Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW. GeoReM: A new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res. 2005;29(3):333-338. doi:10.1111/j.1751-908X.2005.tb00904.x
Beck KK, Schmidt-Grieb GM, Laudien J, et al. Environmental stability and phenotypic plasticity benefit the cold-water coral Desmophyllum dianthus in an acidified fjord. Commun Biol. 2022;5(1):683. doi:10.1038/s42003-022-03622-3
Fillinger L, Richter C. Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: A cold-water coral thriving at low pH. PeerJ. 2013;1:e194. doi:10.7717/peerj.194
Rossbach S, Rossbach FI, Häussermann V, Försterra G, Laudien J. In situ skeletal growth rates of the solitary cold-water coral Tethocyathus endesa from the Chilean fjord region. Front Mar Sci. 2021;8:757702.
Garcia-Herrera N, Cornils A, Laudien J, et al. Seasonal and diel variations in the vertical distribution, composition, abundance and biomass of zooplankton in a deep Chilean Patagonian fjord. PeerJ. 2022;10:e12823. doi:10.7717/peerj.12823
Pierrot D, Lewis, E, Wallace DR. MS Excel program developed for CO2 system calculations. ORNL Environmental Sciences Division. 2006.
Richter S, Konegger-Kappel S, Boulyga SF, Stadelmann G, Koepf A, Siegmund H. Linearity testing and dead-time determination for MC-ICP-MS ion counters using the IRMM-072 series of uranium isotope reference materials. J Anal At Spectrom. 2016;31(8):1647-1657. doi:10.1039/C6JA00203J
Davis DW. A simple method for rapid calibration of Faraday and ion-counting detectors on movable multicollector mass spectrometers. J Mass Spectrom. 2020;55(6):e4511. doi:10.1002/jms.4511
Robinson LF, Adkins JF, Frank N, et al. The geochemistry of deep-sea coral skeletons: A review of vital effects and applications for palaeoceanography. Deep-Sea Res II Top Stud Oceanogr. 2014;99:184-198. doi:10.1016/j.dsr2.2013.06.005
Stewart JA, Anagnostou E, Foster GL. An improved boron isotope pH proxy calibration for the deep-sea coral Desmophyllum dianthus through sub-sampling of fibrous aragonite. Chem Geol. 2016;447:148-160. doi:10.1016/j.chemgeo.2016.10.029
Chalk TB, Standish CD, D'Angelo C, Castillo KD, Milton JA, Foster GL. Mapping coral calcification strategies from in situ boron isotope and trace element measurements of the tropical coral Siderastrea siderea. Sci Rep. 2021;11(1):1-13. doi:10.1038/s41598-020-78778-1
Raitzsch M, Bijma J, Benthien A, Richter KU, Steinhoefel G, Kučera M. Boron isotope-based seasonal paleo-pH reconstruction for the Southeast Atlantic - A multispecies approach using habitat preference of planktonic foraminifera. Earth Planet Sci Lett. 2018;487:138-150. doi:10.1016/j.epsl.2018.02.002
Anagnostou E, Huang KF, You CF, Sikes EL, Sherrell RM. Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: Evidence of physiological pH adjustment. Earth Planet Sci Lett. 2012;349:251-260. doi:10.1016/j.epsl.2012.07.006
McCulloch M, Trotter J, Montagna P, et al. Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation. Geochim Cosmochim Acta. 2012;87:21-34. doi:10.1016/j.gca.2012.03.027
Rae JW, Burke A, Robinson LF, et al. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales. Nature. 2018;562(7728):569-573. doi:10.1038/s41586-018-0614-0
McCulloch MT, D'Olivo JP, Falter J, et al. Boron isotopic systematics in scleractinian corals and the role of pH up-regulation. In: Boron Isotopes. Springer; 2018:145-162.
Prouty NG, Wall M, Fietzke J, et al. The role of pH up-regulation in response to nutrient-enriched, low-pH groundwater discharge. Mar Chem. 2022;243:104134. doi:10.1016/j.marchem.2022.104134
Wall M, Ragazzola F, Foster LC, Form A, Schmidt DN. pH up-regulation as a potential mechanism for the cold-water coral Lophelia pertusa to sustain growth in aragonite undersaturated conditions. Biogeosciences. 2015;12(23):6869-6880. doi:10.5194/bg-12-6869-2015
Klochko K, Kaufman AJ, Yao W, Byrne RH, Tossell JA. Experimental measurement of boron isotope fractionation in seawater. Earth Planet Sci Lett. 2006;248(1-2):276-285. doi:10.1016/j.epsl.2006.05.034
Dickson AG. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Res A Oceanogr Res Pap. 1990;37(5):755-766. doi:10.1016/0198-0149(90)90004-F
Gattuso JP, Epitalon JM, Lavigne H, Orr J. seacarb: Seawater carbonate chemistry. R package version 3.2. 12. Published online 2019.
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2021.
Blamart D, Rollion-Bard C, Meibom A, Cuif JP, Juillet-Leclerc A, Dauphin Y. Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa: Implications for biomineralization and paleo-pH. Geochem Geophys Geosyst. 2007;8(12):2007GC001686. doi:10.1029/2007GC001686
Fonseca RO, Kirchenbaur M, Ballhaus C, et al. Fingerprinting fluid sources in Troodos ophiolite complex orbicular glasses using high spatial resolution isotope and trace element geochemistry. Geochim Cosmochim Acta. 2017;200:145-166. doi:10.1016/j.gca.2016.12.012
Jochum KP, Wilson SA, Abouchami W, et al. GSD-1G and MPI-DING reference glasses for in situ and bulk isotopic determination. Geostand Geoanal Res. 2011;35(2):193-226. doi:10.1111/j.1751-908X.2010.00114.x
Kasemann S, Meixner A, Rocholl A, et al. Boron and oxygen isotope composition of certified reference materials NIST SRM 610/612 and reference materials JB-2 and JR-2. Geostandards Newsletter. 2001;25(2-3):405-416. doi:10.1111/j.1751-908X.2001.tb00615.x
Pi JL, You CF, Chung CH. Micro-sublimation separation of boron in rock samples for isotopic measurement by MC-ICPMS. J Anal At Spectrom. 2014;29(5):861-867. doi:10.1039/C3JA50344E
Cai Y, Rasbury ET, Wooton KM, Jiang X, Wang D. Rapid boron isotope and concentration measurements of silicate geological reference materials dissolved through sodium peroxide sintering. J Anal At Spectrom. 2021;36(10):2153-2163. doi:10.1039/D1JA00195G
Romer RL, Meixner A, Hahne K. Lithium and boron isotopic composition of sedimentary rocks - The role of source history and depositional environment: A 250 Ma record from the Cadomian orogeny to the Variscan orogeny. Gondw Res. 2014;26(3-4):1093-1110. doi:10.1016/j.gr.2013.08.015
Rosner M, Meixner A. Boron isotopic composition and concentration of ten geological reference materials. Geostand Geoanal Res. 2004;28(3):431-441. doi:10.1111/j.1751-908X.2004.tb00761.x
He M, Xia X, Huang X, et al. Rapid determination of the original boron isotopic composition from altered basaltic glass by in situ secondary ion mass spectrometry. J Anal At Spectrom. 2020;35(2):238-245. doi:10.1039/c9ja00374f
Halama R, Konrad-Schmolke M, De Hoog J. Boron isotope record of peak metamorphic ultrahigh-pressure and retrograde fluid-rock interaction in white mica (Lago di Cignana, Western Alps). Contrib Mineral Petrol. 2020;175(3):20. doi:10.1007/s00410-020-1661-8
Lloyd NS, Sadekov AY, Misra S. Application of 1013 ohm Faraday cup current amplifiers for boron isotopic analyses by solution mode and laser ablation multicollector inductively coupled plasma mass spectrometry. Rapid Commun Mass Spectrom. 2018;32(1):9-18. doi:10.1002/rcm.8009
Wang BS, You CF, Huang KF, et al. Direct separation of boron from Na- and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS. Talanta. 2010;82(4):1378-1384. doi:10.1016/j.talanta.2010.07.010
Chen X, Deng W, Zhu H, Zhang Z, Wei G, McCulloch MT. Assessment of coral δ44/40Ca as a paleoclimate proxy in the Great Barrier Reef of Australia. Chem Geol. 2016;435:71-78. doi:10.1016/j.chemgeo.2016.04.024
Zhang S, Henehan MJ, Hull PM, et al. Investigating controls on boron isotope ratios in shallow marine carbonates. Earth Planet Sci Lett. 2017;458:380-393. doi:10.1016/j.epsl.2016.10.059
Lazareth CE, Soares-Pereira C, Douville E, et al. Intra-skeletal calcite in a live-collected Porites sp.: Impact on environmental proxies and potential formation process. Geochim Cosmochim Acta. 2016;176:279-294. doi:10.1016/j.gca.2015.12.020
Ishikawa T, Nagaishi K. High-precision isotopic analysis of boron by positive thermal ionization mass spectrometry with sample preheating. J Anal At Spectrom. 2011;26(2):359-365. doi:10.1039/C0JA00060D
Foster GL, Hoenisch B, Paris G, et al. Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO3 by MC-ICP-MS and NTIMS. Chem Geol. 2013;358:1-14. doi:10.1016/j.chemgeo.2013.08.027