Polyethylene terephthalate (PET) biodegradation by Pleurotus ostreatus and Pleurotus pulmonarius.
Biodegradation
FTIR
GC–MS
PET
Pleurotus sp.
Journal
Environmental monitoring and assessment
ISSN: 1573-2959
Titre abrégé: Environ Monit Assess
Pays: Netherlands
ID NLM: 8508350
Informations de publication
Date de publication:
19 Apr 2023
19 Apr 2023
Historique:
received:
08
09
2022
accepted:
20
03
2023
medline:
20
4
2023
pubmed:
19
4
2023
entrez:
18
04
2023
Statut:
epublish
Résumé
The essential properties of polyethylene terephthalate (PET), such as chemical inertness and durability that make it a suitable material for the packaging of mineral and soft drinks, have led to it becoming a major environmental pollutant and a threat to the planet. Ecologically friendly solutions such as bioremediation are now being advocated for by scientists. This paper, therefore, seeks to explore the potential capacity of Pleurotus ostreatus and Pleurotus pulmonarius in biodegrading PET plastic on two different substrates (soil and rice straw). The substrates were combined with 5% and 10% plastic before inoculation with Pleurotus ostreatus and Pleurotus pulmonarius and then left to incubate for 2 months. Biodegradation, monitored by FT-IR pointed to the formation of new peaks in the incubated plastics after 30 and 60 days unlike in the control. Changes in band intensity and shifts in the wavenumbers caused by stretching of functional groups, C-H, O-H and N-H in the band region of 2898 cm
Identifiants
pubmed: 37072643
doi: 10.1007/s10661-023-11153-5
pii: 10.1007/s10661-023-11153-5
doi:
Substances chimiques
Polyethylene Terephthalates
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
585Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Abou Fayssal, S., Alsanad, M. A., Yordanova, M. H., El Sebaaly, Z., Najjar, R., & Sassine, Y. N. (2021). Effect of olive pruning residues on substrate temperature and production of oyster mushroom (Pleurotus ostreatus). Acta Horticulturae, 1327, 245–252.
doi: 10.17660/ActaHortic.2021.1327.32
Adenipekun, C. O., & Fasidi, I. O. (2005). Bioremediation of oil by Lentinus subnudus, a Nigerian white-rot fungus. African Journal of Biotechnology, 4(8), 796–798.
Alzuhairi, M., Al-Ghaban, A., & Almutalabi, S. (2016). Chemical recycling of polyethylene terephthalate (PET) as additive for asphalt. ZANCO Journal of Pure and Applied Sciences, 28, s675-679.
Bhardwaj, H., Gupta, R., & Tiwari, A. (2012). Microbial population associated with plastic degradation. Open Access Scientific Reports, 1(5), 272.
Broszeit, S., Hattam, C., & Beaumont, N. (2016). Bioremediation of waste under ocean acidification: Reviewing the role of Mytilus edulis. Marine Pollution Bulletin, 103, 5–14.
doi: 10.1016/j.marpolbul.2015.12.040
Chetna, S., & Madhuri, S. (2012). Studies on biodegradation of polyethylene terephthalate: A synthetic polymer. Journal of Microbiology and Biotechnology Research, 2(2), 248–257.
Chirila, A., van Vliet, K. M., Paul, N. D., & de Bruin, B. (2018). [Co(MeTAA)] Metalloradical catalytic route to ketenes via carbonylation of carbene radicals. European Journal of Inorganic Chemistry, 20–21, 2251–2258.
doi: 10.1002/ejic.201800101
da Luz, J. M. R., da Silva, M. S., Santos, L. F., & Kasuya, M. C. M. (2019). Plastic polymer degradation by fungi. In Blumenberg, M., Shaaban, M., and Elgaml, A. (Eds.), Microorganisms (Chapter 13). IntechOpen. https://doi.org/10.5772/intechopen.82960
da Luz, J. M. R., Paes, S. A., Bazzolli, D. M. S., Totola, M. R., Demuner, A. J., & Kasuya, M. C. M. (2014). Abiotic and biotic degradation of oxo-biodegradable plastic bags by Pleurotus ostreatus. PLoS ONE, 9(11), e107438.
doi: 10.1371/journal.pone.0107438
Esmaeili, A., Pourbabaee, A. A., Alikhani, H. A., Shabani, F., & Esmaeili, E. (2013). Biodegradation of low density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. PLoS ONE, 8(9), e71720.
doi: 10.1371/journal.pone.0071720
Farzi, A., Dehnad, A., & Fotouhi, F. A. (2019). Biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process. Biocatalysis and Agricultural Biotechnology, 17, 21–23.
doi: 10.1016/j.bcab.2018.11.002
Gajendiran, A., Krishnamoorthy, S., & Abraham, J. (2016). Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. Biotech, 6, 52.
Glaser, J. A. (2019). Biological degradation of polymers in the environment. Intechopen. https://doi.org/10.5772/intechopen.85124
doi: 10.5772/intechopen.85124
Gok, A. (2016). degradation pathway models of poly (ethylene-terephthalate) under accelerated weathering exposures. Phd Thesis. Case Western Reserve University, Ohio, United States of America.
Hock, O. G., Ding, D. Q., Lum, H. W., Hee, C. W., & Shing, W. L. (2020). Evaluation of the plastic degradation ability of edible mushrooms prices nasd on their growth and manganese peroxidase activity. Current Topics in Toxicology, 16, 65–72.
Hock, O. G., Lum, H. W., De Qin D, Kee, W. K., Shing, W. L. (2019). The growth and laccase activity of edible mushrooms involved in plastics degradation. Researchgate. Toxicology, 15.
International Organisation for Standardization. (2019). Platics-Evaluation of the action of Microorganisms (IS0 846:2019). Retrieved from https://www.ivami.com/en/biocidal-activities-with-disinfectants-160-accredited-tests/5096-iso-00846-action-of-microorganisms-on-plastics-une-en-iso-846-1998-b-plastics-evaluationof-the-action-of-microorganisms-b-accredited-by-enac-b
Konkol, L. M., Cross, R. F., Harding, I. H., & Kosior, E. (2003). Contaminants and levels of occurrence in washed and shredded poly (ethylene terephthalate) from the curbside collection. Part 1: Extraction conditions. Food Additives & Contaminants, 20(9), 859–874.
Kumar, P., Eid, E. M., Al-Huqail, A. A., Širić, I., Adelodun, B., Abou Fayssal, S., Valadez-Blanco, R., Goala, M., Ajibade, F. O., Choi, K. S., et al. (2022). Kinetic studies on delignification and heavy metals uptake by shiitake (Lentinula edodes) mushroom cultivated on Agro-Industrial Wastes. Horticulturae, 8, 316. https://doi.org/10.3390/horticulturae8040316
doi: 10.3390/horticulturae8040316
Kyaw, B. M., Champakalakshmi, R., Lim, C. S., Sakharkar, M. K., & Sakharkar, K. R. (2012). Biodegradation of low-density polythene (LDPE) by Pseudomonas Species. Indian Journal of Microbiology, 52(3), 411–419.
doi: 10.1007/s12088-012-0250-6
Lincoln, J. (2015). Designing a closed loop system for PET bottles recovery in Nigeria. Bachelor Thesis. University of Applied Sciences, Haaga-Helia, Finland.
Massy, J. (2017). A little book about BIG chemistry: The story of man-made polymers. Springer.
doi: 10.1007/978-3-319-54831-9
Mismisuraya, M. A., Yaacob, N. D., & Zulkifle, N. A. N. (2021). IOP Conference Series: Earth and Environmental Science, 765, 012015.
Muhonja, C. N., Makonde, H., Magoma, G., & Imbuga, M. (2018). Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS ONE, 13(7), e0198446.
doi: 10.1371/journal.pone.0198446
Onakpharkpote, E. E., Adenipekun, C. O., & Oyetunji, O. J. (2015). Bioremediation of spent diesel oil contaminated soil by Pleurotus ostreatus (Jacq. Fr) P. Kumm. Journal of Science Research, 14, 117–124.
Radha, K. V., Regupathi, I., Arunagiri, A., & Murugesan, T. (2005). Decolorization studies of synthetic dyes using Phanerochaete chrysosporium and their kinetics. Process Biochemistry, 40, 3337–3345.
doi: 10.1016/j.procbio.2005.03.033
Shilpa, B., & N. & Meena, S.S. (2022). Microbial biodegradation of plastics: Challenges, opportunities, and a critical perspective. Frontiers of Environmental Science & Engineering, 16, 161.
doi: 10.1007/s11783-022-1596-6
Srikanth, M., Sandeep, T. S. R. S., Sucharitha, K., & Godi, S. (2022). Biodegradation of plastic polymers by fungi: A brief review. Bioresources and Bioprocessing, 9, 42.
doi: 10.1186/s40643-022-00532-4
Umamaheswari, S., Murali, M., & Ilayaraja, P. (2013). Micromorphological and chemical changes during biodegradation of polyethylene terephthalate (PET) by Penicillium sp. Journal of Microbiology and Biotechnology, 3(4), 47–53.
Updyke, R. (2014). Biodegradation & feasibility of three Pleurotus species on cigarette filters. Honors College Paper, 192.
Urbanek, A. K., Kosiorowska, K. E., & Mirończuk, A. M. (2021). Current knowledge on polyethylene terephthalate degradation by genetically modified microorganisms. Frontiers in Bioengineering and Biotechnology, 9, 771133.
doi: 10.3389/fbioe.2021.771133
Vague, M., Chan, G., Roberts, C., Swartz, N. A., & Mellies, J. L. (2019). Pseudomonas isolates degrade and form biofilms on polyethylene terephthalate (PET) plastic. bioRxiv.
Venkatachalam, S., Nayak, S. G., Labde, J. V., Gharal, P. R., Rao, K. & Kelkar, A. K. (2012). Degradation and recyclability of poly (ethylene terephthalate). Polyester, 75–98.
Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., & Oda, K. (2016). A bacterium that degrades and assimilates poly (ethylene terephthalate). Science, 351(6278), 1196–1199.
doi: 10.1126/science.aad6359